An Improved Homonym Disambiguation Model based on Bayes Theory

Bayes 정리에 기반한 개선된 동형이의어 분별 모텔

  • 김창환 (울산대학교 컴퓨터정보통신공학부) ;
  • 이왕우 (울산대학교 컴퓨터정보통신공학부)
  • Published : 2001.12.01

Abstract

This paper asserted more developmental model of WSD(word sense disambiguation) than J. Hur(2000)'s WSD model. This model suggested an improved statistical homonym disambiguation Model based on Bayes Theory. This paper using semantic information(co-occurrence data) obtained from definitions of part of speech(POS) tagged UMRD-S(Ulsan university Machine Readable Dictionary(Semantic Tagged)). we extracted semantic features in the context as nouns, predicates and adverbs from the definitions in the korean dictionary. In this research, we make an experiment with the accuracy of WSD system about major nine homonym nouns and new seven homonym predicates supplementary. The inner experimental result showed average accuracy of 98.32% with regard to the most Nine homonym nouns and 99.53% for the Seven homonym predicates. An Addition, we save test on Korean Information Base and ETRI's POS tagged corpus. This external experimental result showed average accuracy of 84.42% with regard to the most Nine nouns over unsupervised learning sentences from Korean Information Base and ETRI Corpus, 70.81 % accuracy rate for the Seven predicates from Sejong Project phrase part tagging corpus (3.5 million phrases) too.

본 연구에서는 동형이의어 분별을 위하여 허정(2000)이 제시한 "사전 뜻풀이말에서 추출한 의미정보에 기반한 동형이의어 중의성 해결 시스템"이 가지는 문제점과 향후 연구과제로 제시한 문제들을 개선하기 위하여 Bayes 정리에 기반한 동형이의어 분별 모델을 제안한다. 의미 분별된 사전 뜻풀이말 코퍼스에서 동형이의어를 포함하고 있는 뜻풀이말을 구성하는 체언류(보통 명사), 용언류(형용사, 동사) 및 부사류(부사)를 의미 정보로 추출한다. 동형이의어의 의미별 사전 출현 빈도수가 비교적 균등한 기존 9개의 동형이의어 명사를 대상으로 실험하여 비교하였고, 새로 7개의 동형이의어 용언(형용사, 동사)을 추가하여 실험하였다. 9개의 동형이의어 명사를 대상으로 한 내부 실험에서 평균 99.37% 정확률을 보였으며 7개의 동형이의어 용언을 대상으로 한 내부 실험에서 평균 99.53% 정확률을 보였다. 외부 실험은 국어 정보베이스와 ETRI 코퍼스를 이용하여 9개의 동형이의어 명사를 대상으로 평균 84.42% 정확률과 세종계획의 350만 어절 규모의 외부 코퍼스를 이용하여 7개의 동형이의 어 용언을 대상으로 평균 70.81%의 정확률을 보였다. 정확률을 보였다.

Keywords