i X
2-12-8

An Analysis of the UNIX Echo Response Time
(F92 ALSGAZ #4)

o] &= M=%
a o =

(Jong-Seul Lim)

ABSTRACT

The echo response time has been a concern in the performance of the UNIX systems, a significant tail
always appears in the distribution of echo response time, though the average echo response time is less
serious. This paper addresses the issue of echo response times in the UNIX systems. We explain how the
Fair Share Scheduler (FSS) works and explain why the FSS might cause excessive echo response times and
show by analysis how echo response time reacts to key parameters under FSS. Finally, we present a
recommended solution that should improve the echo response time drastically. This solution is a refined FSS
which will overcome the echo response time problem while retaining the essence of the FSG. This will
enhance the UNIX performance and productivity.

2 o
AERALE FI2 A2E A5 S 42 oI, Fihow v Fas A o
ol dig BArE A G EAHC] Ao B =%
2~ #d 9 Fair Share Scheduler (FSS)‘—S— Aslm, FSS9J
g E48 o83 £4E Bt AZSFATE FATIE EHE AAEG o] sAHe fY
Q) FSSe EAE gA oA dRgHALe i FAYSE S5 F de MHE FSSolr}. o]y
A% 255 et FEAQ BAE ARgatgon, AAlE e fHaA 2" A 2 AMEE =Y

z o2 o
o ok
mTS
e
[
£
2
2"
olo
L ol
l
ri
_°,
iy
2

1. FOREWORD works and explain why it may extend echo response
time and then provide an analytical proof. Finally,
The echo response time (explained in Section 3 we propose a refined FSS which will overcome the

& [7]) has been a concern in the performance of echo response time problem while retaining the

the UNIX machines, ie., a significant tail always essence of FSS.
appears in the distribution of echo response time,
though the average echo response time is less
serious. This study is motivated by the excessive
echo response time is primarily caused by the Fair
Share Scheduler (FSS) implemented with the UNIX

systems. In this paper, we first illustrate how FSS

* A5 AR MR R wg w224 2001, 12 11
AR - 2001 12, 17,

1558 ERBIATFEIE R HEBE ik 2001, 12, Vol. 2., No. 12, December

2. UNIX AND FSS

Standard UNIX
scheduling discipline which assigns process priorities

employs a priority-driven
dynamically. There are 128 priority levels used
among which the top 40 are assigned to processes
which roadblock themselves during system calls and
the remaining are used for processes running or
waiting in the user mode. A process running in the
system mode is not preemptive while one running
in the user mode is. The scheduler manages a time

quantum of 1 second and uses a time slice of x”
ms. The scheduler also records the CPU usage rate
of each process. A process’priority is recalculated
every second or when it returns from a system call
based on its recent CPU usage. The FSS divides
user processes into groups each of which is
allocated a fixed CPU usage rate ~(or share). In
general, the rate is proportional to the group’s CPU
consumption rate projected{3]. Each group is
associated with a variable group priority which is
determined by its recent CPU usage rate, as
compared to other groups. Specifically, the ratio of
the group’s actual CPU wusage rate and its
contracted rate is the index of its relative priority.
Within each Fair Share Group (FSG), UNIX
scheduling discipline is employed. In other words,
within a group, a process is associated with a
priority number ranging from 0 to 127. Group
priorities have no effect on UNIX priorities 0
through 39. In other words, processes waiting in the
system mode are free of group priorities. For
processes waiting or running in the user mode
however, its associated group’s priority completely
overrides its UNIX priority. Therefore, a process
with a UNIX priority of 127 will attain the CPU
earlier than one with a UNIX priority of 40 if the
former’s group priority is higher than the latter’s.

3. CASE STUDY THE ECHO RESPONSE
TIME

3.1 Motivation

A keystroke generates a character interrupt and is
initially scheduled in the system mode which is free
of FSG priorities. After the needed system work is
completed, the process with which the keystroke is
associated returns to the user mode, uses the CPU
to continue the processing of the character, and
finally echoes the character. Note that it is quite
likely that the process is preempted by system calls
after it leaves the system mode. If a preemption
occurs, the process is rescheduled at a UNIX user
priority which is accompanied by an FSG priority;
otherwise, the FSS would have no impact on the
echo response time of the keystroke. Since we are
primarily concerned with excessive echo response
time caused by the FSS, the occurrence of the
preemption event will be assumed throughout this
paper.

Consider the following situation: a keystroke with
a low FSG priority is preempted while groups with
higher FSG priorities have CPU-bound jobs to run.
Although this keystroke should receive the top user
priority within its own FSG, it will not be chosen
to run until its FSG priority turns around. This
situation results in an excessive echo response time
and will take place constantly because current
scheduling discipline places FSG priorities on top of
all UNIX user priorities. In general, a batch job has
a lower UNIX priority than an interactive job. Thus,
it may not be trivial that running batch jobs in an
FSG may prolong the echo response times of
interactive users within that FSG. As a matter of
fact, however, because an FSG running batch jobs a
result, a keystroke entering the system right after a
substantial service was given to its FSG is expected
to wait longer. Typically, a keystroke needs a
minimal amount of CPU time to complete.

Therefore, after being preempted, it is expected to
stay in the highest user-priority queue within its
FSG. This implies that the echo response time is
heavily dominated by the group wait time the
amount of time from a random arival instant until
the associated FSG earns its turn of using the CPU.

3.2 Analysis

Let x.denote the group service time per CPU
visit of FSG k%. Certainly X is related to the
workload of FSG % and fluctuates with time. For
simplicity. We assume that X, is quasi-static, ie.,
X, changes very slowly with time. We will treat
X, as a constant over several services. Also, we
assume that FSG % steadily receives its share of
CPU usage rate, say S:, 0 < S,< 1. Then, FSG

Xe
k obtains one service (of length X.) per S,

seconds and therefore, the interservice time is given

&— xk[l"_sk]
by S, T+ or Sk

keystroke may arrive any time during each period

A preempted

73
of S, seconds with a uniform probability density

Sk
x, . If it arrivers during the service interval of

FSG £k, the group wait time w,; would be zero.

Zerq
Otherwise, w.can range from zero to S, [1~S,]

Se
with an equal demsity «x, . Therefore, the density

of w; can be written as
S,
flwdx,]=8,0[w,]1+ o
k

OkaStmax[xk] (1)

where 6 () is the Dirac delta function and where

An Analysis of the UNIX Echo Response Time 1559

X
tx]==1-5,
ORI N

is the worst-case wait time given #*,. The group

1-S,

expansion factor S plays a major role in

Fmax [%2]. For Sy=20%, this factor is four and
for S,=10%, this factor is nine. Also, note that
%, may exceed 1 second even though a l-second

service quantum is maintained by FSS. The average

group wait time can be computed as follows:

tmax] x,]
Elw,lx,= fo wflw,| x,ldw,

S, x 9
:gkz tzmax[xk]:_zigk—k[l_sk] (3)

Also, we define a 95-percintile group wait time,

tislx,], to be the number such that
Prob{w,=t5[x,1} =5%
It is readily shown that

0.95— S,

tela) = 212t ta Ll = G058, (g

Apparently, given S, echo response time (the
average, the worst, or the 95-percentile) is linearly
increasing with %,.

Tables 1 and 2 show fnaclx:], Elw,lx,] and
tos[x,] for various values of x, with S,=40%
and S;=10% respectively. A comparison of Table
1 and 2 exhibits a substantial impact of S; on
echo response time. In reality, system traffic
fluctuates and thus, the FSS cannot consistently
provide every FSG with its contracted share. As a
result, the instantaneous CPU share allocated to
FSG k (say, S

fluctuates, even though

1560 EEBAFEE EHEEE H ik "2001. 12, Vol. 2., No. 12, December

E[Sk]z Sy

Naturally it would be more accurate to use S

may be maintained by the FSS.

instead of S, in determining echo response time. It
S’y is related to

system load. If FSG k has a considerable amount

is essential to point out that

of traffic, then S, would tend to be larger when
system load is light and smaller when system load
is heavy. This implies that system load has a
substantial
summary, excessive echo response time is caused by
FSS through the following two factors:

impact on echo response time. In

(i) An FSG with a smaller CPU share has a
larger group expansion factor.
(i) If an FSG consumes a larger CPU time per

service, it is associated with a longer
interservice time.
Table 1 S,=40%
Xy Elwyl 2] | e [24] tos[x,]
0.1 sec 0.045 sec 0.15 sec 0.1375 sec
0.5 sec 0.225 sec 0.75 sec 0.6875 sec
1 sec 045 sec 1.5 sec 1.375 sec
2 sec 0.9 sec 3 sec 2.75 sec

Table 2 S,=10%

3.3 Echo Response Time Versus System
Load

In this section, we study the relationship between
group wait time w (which dominates echo response
time) and CPU utilization rate p (ie., system load)
based on a simple FSS model. This model has the
essenceof FSS and is intended for analytical
tractability. The result is thus, model-dependent and
should not represent the functional relationship
between w and p in general. Nevertheless, it does
provide a fundamental guideline as to how echo

response time reacts to system load in FSS. We
assume that there are M fair share groups, FSG 1,
FSG2, , FSG M , in the system and that each FSG
has an equal contracted share of CPU usage: i.e.,

-1
Si= M, 1<i<M. Furthermore, we assume that
each FSG has an equal CPU utilization rate, i.e.,

p1=p2=A=pM=—ﬁ-

where p is the overall CPU utilization rate.
Then we have:

o= Prob {an FSG has a runnable process when
the CPU is available to it}

Now consider a test keystroke arriving at FSG 1
whose instantaneous group priority is n, Note that,
by symmetry, the random integer n is equally likely
to assume any integer from 1 to M ; that is

Xy Elwylxg] |t 2] tos[)
0.1 sec 0.405 sec 0.9 sec 0.85 sec
0.3 sec 1.215 sec 2.7 sec 2.55 sec
0.5 sec 2.025 sec 4.5 sec 4.15 sec
1 sec 405 sec 9 sec 8.5 sec
1
p(n) =M 1<nsM 5)
There are n 1 groups ahead of FSG 1. Each

group has a probability o to offer a process when
CPU calls it. Let Jbe the number of groups that the
test job of FSG 1 has to wait, then,

SEPTRRGI B 2ok | R/ P R gy e
wr=itm=(") =pa-pr1 0sisa-1gg
Unconditioning on n, we obtain:

pI== 3% =il W)

n=js+1

w25l 2 (77 Jamsr st g

n=+

Let x= x(p) be average service time per group
per CPU visit. Then we have the average group
wait time given J = j :

EHwl|J=71=0 for j=0 (8a)

0. 1%
EIw|]=J]Z[J—§]x for 1<j<M—1 (8b)

Note that x(p) increases with group utilization
L .
rate Jf, or with p.

1
The deduction of 9 from j accounts for the
fact that the FSG currently being serviced has only

an average residual time % remaining. The
inequality is necessary because an FSG may receive
more than one service before its priority falls below
FSG 1’s. Using (7) and (8), we may compute a

lower for echo response time:

Huwl=E Ew|J= /= tgolﬂwlf=f]p(]=i)
M*ll . l M—-1 ~ |-
; JD(JZJ)~§]le(]=i)]x

1
LS is=ifz=L Bz

=L BEU I wTx=1 BL(n= Dol by)
M

1 —
T PPy 5) ©)
For M=10 and

E(w)=22.25a0%. Let us now consider the worst
case in which /= M—1 and

x=ap second, we have

Blwlj=m-112[M-)1z (10)

This worst-case group wait time would increase
with o since x does. Above all, the probability
that this worst case would occur is, by (7):

plJ=M— l]% p! (11)

An Analysis of the UNIX Echo Response Time 1561

which increases rapidly with p, especially when

H

M is large. Alternatively, we may write:

o jeo

ﬁ{ average group wail time exceeds[M —

Zue (12)

Therefore, not only the worst-case group wait
time become unacceptable, but does the probability
of its occurrence when o approaches 1. Although
these results were obtained based on the assumption

that all M FSGs have an identical CPU share

M, they can be generalized to encompass more

practical situations. For example, suppose FSG 1

1
has a CPU share of % and that the CPU shares
of the remaining (M—1) FSGs are arbitrary. These
(M—1) FSGs have a combined CPU share of

k—1
% . Then, as far as the group wait time for

FSG 1 is concemed, the remaining (M—1) FSGs
are equivalent to (%k—1) FSGs each of which has

a CPU share of —}; Then, the results derived
above apply (to FSG 1), provided that M is
replaced by 4. Essentially, it is the CPU share of
an FSG rather than the total number of FSGs that
determines its group wait time. Therefore, in
general, we may apply the above results to an FSG

1
whose CPU share is § by substituting 37 by §

1
and M by § .

4. CONCLUSIONS

One crucial feature of UNIX is its capability of
offering interactive jobs excellent response time. The
FSS degrades this capability by allowing FSG
priorities to override all UNIX wuser priorities. To
bring the UNIX advantage for interactive users, we
need to release those non-CPU-bound interactive
processes from FSS. Specifically, if these processes

1562 EEAFEHEEHRETEE HEE 2001. 12, Vol 2., No. 12, December

are either made nonpreemptive or chosen to run
regardless of their FSG associations, the group wait
time, will no longer be part of echo response time.
For the FSS, basically, each FSG has to compete
against the entire system traffic for use of CPU. In
Section 3, we derived a low bound for average
group wait time, which increases quadratically with
CPU utilization rate p. It was also indicated that
the group wait time dominates echo response time.
Now for the refined FSS, a non-CPU-bound
interactive process competes only against other
non-CPU-bound interative processes in the system in
the system. These Processes altogether represents
simply a small fraction, say C, of CPU utilization
rate, ie, ¢ << 1. Let y be the average service
time a keystroke mneeds; we have y <<%, of
course, where x has been used to demote the
average service time per group per CPU visit. Then,
using an M/M/1 queue model for keystrokes leads
to an average echo response time[4]:

__
Tarss= T2, (13)

The equation (13) implies that Trrss increases
nearly linearly with p. The improvement is very
visible. Basically, the proposed idea entails a
characterization of non-CPU-bound interactive
processes that would enable the operating system to
distinguish them other processes. The goal, of
course, is to accommodate all qualified interactive
processes while keeping others under the control of
FSS. Achieving this goal entails novel classification
schemes of non-CPU-bound interactive processes
which are currently being explored.

¥ References

[1] UNIX System V Release 2.0 User Reference
Manual, AT&T Bell Laboratories, 1995.

[21 J M Chambers, W. S. Cleveland, B. Kleiner, and
P. A. Tukey, Graphical Methods For Data Analysis,
Wadsworth Statistics/Probability Series, 1993.

[31 G. J. Henry, "The Fair Share Scheduler,” AT&T
Bell Lab. Tech. J., Vol. 63, No. 8, pp. 1845-1857,
1984.

[4] L Kleinrock, Queueing System Volume I: Gomputer
Applications, Wiley, 1976.

[5] H W. Lee, Queueing Theary, Sigma Press, 1998.

[6) M. J. Bach, The Design of The UNIX
Operating System, Prentice-Hall, 1986.

[71 1 S Lim S H Kim “The Optimal Utilization
Detremined By The Response Time,” Vol. 2, No. 9,
2001

[8] S. S. Lavenberg, Computer Performance Modeling
Handbook, Academic Press, Inc, 1988.

[9] K. Thompson, “UNIX Time-Sharing System:
UNIX Implementation,” The Bell System Tech.
J. Vol. 57, No.6, 1931-1946, 1978.

{10} M. Sakata, S. Noguchi, and J. Oizumi, “An
Analysis of M/G/1 Queue under Round-Robin
Scheduling,” Operations Research, Vol. 19,
371-385, 1971.

[11] C Y. Lo, “Performance Analysis and Application of a
Two-priority Packet Queve,” AT&T Tech J. Vol 66,
No. 3, 8299 May-hae 1987.

gdFA

—— W 19794 AStshn
FHEr FEA}

1986'd Polytechnic University,
New York §213% Fshaia}

¥F 1986391\ AT&T WdT74

E ClESAAAEAE
FdArd

19913-93 g=0]F 52
A4 Addr4

19933-8A >
AAF R FHE u

TRk olFFA,
tlolebsd, AFE vESHZ

