Uptake, Assimilation and Translocation of Ammonium or Nitrate in Italian Ryegrass

  • Kim, Tae-Hwan (Department of Animal Science & Institutes of Agriculture Science and Technology, College of Agriculture, Chonnam National University) ;
  • Lee, Bok-Rye (Department of Animal Science & Institutes of Agriculture Science and Technology, College of Agriculture, Chonnam National University) ;
  • Jung, Woo-Jin (Department of Animal Science & Institutes of Agriculture Science and Technology, College of Agriculture, Chonnam National University) ;
  • Kim, Dae-Hyun (Department of Animal Science & Institutes of Agriculture Science and Technology, College of Agriculture, Chonnam National University) ;
  • Chung, Soon-Ju (Faculty of Applied Plant Science, College of Agriculture, Chonnam National University) ;
  • Kim, Kil-Yong (Department of Biological & Environmental Chemistry, College of Agriculture, Chonnam National University)
  • Published : 2001.09.01

Abstract

To investigate the partitioning of newly absorbed N derived from NO$_3$- and NH$_4$$^{+}$, 6 mM $K^{15}$ NO$_3$ or 3 mM ($^{15}$ NH$_4$)$_2$ was fed continuously in Italian ryegrass (Lolium multiflrum L.) for 7 days. Nitrogen metabolites (nitrate, amino acid, soluble- and insoluble protein) were analyzed at the end of $^{15}$ N feeding. Dry weight in shoot, stubble and root was not significantly different between NO$_3$$^{[-10]}$ and NH$_4$$^{+}$ feeding. Total nitrogen content in all three organs was significantly higher in NH$_4$$^{+}$ than NO$_3$$^{[-10]}$ feeding. Sum on N content in reduced N fractions (amino acids + proteins) in shoot, stubble and roots in NH$_4$$^{+}$ feeding increased by 13.3, 12.5 and 35.4 %, respectively, compared to NO$_3$$^{[-10]}$ feeding. The Relative Specific Activity (RSA, percentage of newly absorbed $^{15}$ N relative to total N in a sample) values of amino acids and insoluble proteins were significantly higher in NH$_4$$^{+}$ feeding. Total amount of newly absorbed $^{15}$ N in NO$_3$$^{[-10]}$ and NO$_3$$^{[-10]}$ feeding was 52.3 and 69.5 mg/plant on dry matter basis, respectively. In both NH$_4$$^{+}$ and NO$_3$$^{[-10]}$ grown plants, most of the N was allocated to the shoot, 67.5% in NH$_4$$^{+}$ feeding and 58.8% NO$_3$$^{[-10]}$ feeding, respectively. The $^{15}$ N amount incorporated in the reduced N compounds (amino acids and proteins) in NH$_4$$^{+}$ grown plants significantly increased by 74.8% compared to NO$_3$$^{[-10]}$ grown plants. The increase of the $^{15}$ N amount assimilated to amino acids in NH$_4$$^{+}$ grown plants was remarkably higher in roots as more than 7.25 times compared to NO$_3$$^{[-10]}$ feeding. These results indicated that Italian ryegrass was much efficiently utilized NH$_4$$^{+}$-N for the synthesis of reduced N compounds.reduced N compounds.

Keywords