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Frequency-Dependent Line Capacitance and

Conductance Calculations of On-Chip Interconnects on

Silicon Substrate Using Fourier cosine Series Approach

H. Ymeri, B. Nauwelaers, S. Vandenberghe, K. Maex, D. De Roest and M. Stucchi

Abstract— 1In this paper a method for analysis and
modelling of coplanar transmission interconnect lines
that are placed on top of silicon-silicon oxide
substrates is presented. The potential function is
expressed by series expansions in terms of solutions
of the Laplace equation for each homogeneous region
of layered structure. The expansion coefficients of
different series are related to each other and to
potentials applied to the conductors via boundary
conditions. In the plane of conductors, boundary
conditions are satisfied at N, discrete points with Ny
being equal to the number of terms in the series
expansions. The resulting system of inhomogeneous
linear equations is solved by matrix inversion. No
iterations are required. A discussion of the calculated
line admittance parameters as functions of width of
conductors, thickness of the layers, and frequency is
given. The interconnect capacitance and conductance
per unit length results are given and compared with
those obtained using full wave solutions, and good
agreement have been obtained in all the cases treated

Index Terms — Interconnects, Doplanar strip line,
Fourier series approach, silicon substrate, point matching
procedure.

Manuscript received September 11, 2001; revised November 6,
2001.

H. Ymeir, B. Nauwelaers, and S. Vandenberghe are with Kathoolieke
Universiteit Leuven, Department of Electrical Engineering(ESAT,
Div, ESAT-TEEMIC, Kasteelpark Arenberg 10, B-3001 Leuven-
Heverlee, Belgium.

(e-mail : hasan.ymeri@esat.kuleuven.ac.be)

K. Maex, D. De Roest, and M. Stucchi are with IMEC, Leuren,
Belgium.

I. INTRODUCTION

The conducting substrates cause different effects, e.g.
coupling effects. For low substrate conductivity (up tp
10 S/m), there are strong capacitive coupling effects
between adjacent lines due to very small line-to-ground
capacitances in comparison to line-to-line capacitances.
In this case, the capacitive coupling dominates the
overall coupling behaviour. Transmission interconnect
lines on MIS structures have been investigated for many
years. There are many techniques for computing the
interconnect shunt admittance parameters. In [2] , [3]
Hasegawa et. al. presented an analysis of microstrip line
on a Si-Si0, system using parallel-plate waveguide
model. In [1], the new model is developed to represent
fin line and wide line interconnect behaviour over a 20
GHz frequency range and includes the substrate
conductance effects. In [4], propagation properties of
multilayer coplanar lines on different types of silicon
substrates are investigated. In [5,6], quasi-analytical
analysis of broadband properties of multiconductor
transmission lines on semiconducting substrates is done,
and the calculated results for line parameters as function
of frequency are discussed. Numerous electromagnetic
approaches have been published which contains results
of numerical full-wave or quasi-TEM analyses [7 - 12].
We can mention, the method based upon the classical
mode-matching procedure [7], the spectral-domain
analysis method [8, 9], and the finite element method
[10] have been investigated for this structure. Recently
quasi-TEM analysis on coplanar structure has made the
incorporation of metallic conductor losses in the analysis
possible and has provided a physical basis for the
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construction of equivalent circuits [11]. In [12], the
CAD-oriented equivalent-circuit modeling procedure
based on a quasi-stationary spectral domain approach
which takes into account the skin effect in the silicon
semiconducting substrate is presented.

The purpose of this paper is a slight modification of a
recently proposed series expansion method [13 - 15],
developed for the electrical modeling of lossy-coupled
multilayer interconnection lines, that does not involve
iterations and yields solutions of sufficient accuracy for
most practical interconnections as used in common VLSI
chips. We use here a Fourier series restricted to cosine
functions. The solution for the layered medium is found
by matching the potential expressions in the different
homogeneous layers with the help of boundary
conditions. In the plane of conductors, the boundary
conditions are satisfied only at a finite, discrete set of
points (point matching procedure) [16].

II. METHOD OF ANALYSIS

The new modeling procedure is described for typical
on-chip interconnects on a lossy silicon substrate with
permittivity g; and conductivity o, as illustrated in Fig. 1.
It consists of the signal lines and two ground lines in the

same plane.
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Fig. 1. Cross-sectioned view of the coplanar interconnect
lines on lossy silicon substrate.

The whole structure in x direction is bounded by open
surfaces (Neumman type boundary conditions) x = 0 and
x =L, respectively.

If the conductivity is small enough or the frequency is
high enough but still well below the quasi-stationary
frequency limit, in each layer of the structure, the
electric potential must be a solution of the Laplace
equation

g 8*
p f*”a 70 M)
z X

In the most general case, the field variation in the x
direction could be described as a Fourier integral.
However, for numerical computations, discrete series are
easier to handle than integrals. For this reason, we use an
expansion of the potential function in terms of cosine
functions [13-15]. The functions cos[m(r/L)x] form a
complete orthogonal set [17] over the domain 0 <x <L
for the integer values of m.

Thus, we may express the potential function ¢ in
regions 3 and 2 as follows :

@03(x,2) = ay +Zw,l apme "2 cos(mmx [ L) ; )
for 0 <z <o, and

0 . -
@5(x,2) = by + oz + E [ {bme_(”’”/L)‘ +c, bz }cos(mzzx/L);
=

(3)

for -h, <z <0, respectively.

Results obtained from the full-wave analysis [6] have
shown that the influence of the finite substrate thickness
h,-h; can be neglected for practical dimensions (i.e., (hy-
h)) >> hy, s, w) for the case without ground plane.

In region of silicon substrate, which is assumed to be

infinitely thick (h, — ), we may write the potential as

M(z+lz,)

P (x,z)=dg + Z::I dmi ‘ ] cos(mmx/L);  (4)

for z < -h,.

The different functional forms of the series expansions
for potential distribution in the structure given by egs.
(2)-(4) are dictated by the boundary conditions.
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II1. BouNDARY CONDITIONS AND FREQUENCY-
DEPENDENT LINE CAPACITANCE AND
CONDUCTANCE CALCULATION

In order to determine the potential distribution in the
structure the boundary conditions must be satisfied. At
interface between dielectric layers, two boundary
conditions need to be satisfied, i.e., the potential and the
normal component of electric induction vector must be
continuous. This leads to the following expression for
the structure shown in Fig. 1:

bm — _1_(1 _z_[je*m(ﬂ'/ll)h] dm for m= 1’2’_._ (5)
2

Cm — l(l + ﬁ-}em(””‘)hldm for m= 1’2,._. (6)
2 &

by=d, and cy,=0. @)

The boundary conditions in the plane of the
infinitesimally thin coplanar conductors at z = 0 are
slightly more complicated. Here, we require again that
potential function @; assume the same value on either
side of the interface. This requirement leads to the
following conditions

for m=1.2,.. )

a, =b, +c,
a0=b0. (9)

But the continuity of the normal component of the
electric induction vector now holds only in the gaps
between the coplanar conductors and not on the perfectly
conducting interconnect conductors themselves. On the
surface of the interconnect conductors the potential
function need to be equal to the applied voltages V (x).
We write the conductor potential as a function of x to
indicate that its value is different on different conductors
in the structure even though V(x) is constant on each
conductor. Thus, we obtain using the relations (8) and
(9), the following set of equations:

by + Z:: (b +m )cos[LnLl x j} =V(x;) on the conductors

(10)

L N-L &3 &y mr .

—cy+ —=—11|b, +|=+1]c, |[cosj—x; | =0 inthe S

20 Zm:;”{[gz jm [61 Jm:| {L j} in the gaps
(11)

The subindex j to the x coordinate means that we
satisfy the boundary conditions in the conductor plane z
= 0 only at a finite set of discrete points x = x;, which
may be chosen arbitrarily. In our case, for convenience,
the discrete points are spaced equidistantly. There are N
points in the conductor plane z = 0 if there are N terms in
the series expansion in order to provide as many
equations (one for each j) as we have unknown
coefficients dy,. It should be clear that the only remaining
undetermined coefficients are the d,,, since the a,, by
and ¢, all depend unambiguously on d, via egs. (5)-(9).
It is also important to note that the sets of equations (10)
and (11) cannot be counted as furnishing 2N equations
since (10) is used only on the conductor surfaces, while
eq. (11) is used only in the interconductor space (gaps) at
z=0.

Point
computational complexity considerably. There is no need
for evaluating integrals over products of the potential
V(x) with the orthogonal set of functions cos[m(n/L)x].
Other methods of analysis [13, 5] require that the value

matching procedures simplifies the

of the voltage in the interconductor space be obtained by
iteration, starting from a suitable initial choice. None of
these complications occurs in the point matching
procedure. We need only to compute the elements of the
matrix A in the equation system

on the conductors (12)

in the interconductor gaps

N-1 Vix;)

defined by relations (5) - (11). Inversion of the matrix
leads to the computation of the unknown coefficients via

d :ZN—l(A_I) . V(x;) on the conductors (13)
" j=0 "\ 0  intheinterconductor gaps

Once the coefficients d,, are determined, the other
expansion coefficients can be obtained using relations
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(5) - (9) and the potential function distribution follows
from (2) - (4), respectively.

Once the potential distribution is available, it is easy
to calculate the capacitance (C) and conductance (G) per
unit length of the examined transmission line structure.
The lossy semiconducting substrate is taken into account
by the complex permittivity

e, = ¢, —j% (14)

where & is the permittivity and o conductivity of the
semiconducting substrate (silicon).
Due to the quasi-TEM

electromagnetic fields in the examined structure the

character of the

frequency dependent distributed admittance per unit
length Y can be calculated as

. . Q
Y=G+ joC=jo—— 15
J J % (15)

where Q is the total charge per unit length and AV
denote the voltage difference between the conductors.
Since we can calculate the capacitance and conductance
per unit length of the examined structure very easily with
the new procedure, all quasi-stationary propagation
parameters of multiconductor transmission lines may be
obtained.

IV. NUMERICAL RESULTS

In order to demonstrate the suitability of the new
formulation for the potential distribution computation,
we present some examples. The numerical results and all
graphs are calculated and constructed by computing the
potential distribution at those x values that coincide with
the points used for point matching; 150 terms are used in
the series expansions.

coplanar strip interconnects structure shown in Fig. 2
is considered. The technological and geometrical
parameters of this structure are:

e w =96 um, w, =20 um, s, = 100 um, t,, = 0.58
um, tg = 500 um, €., = 3.9 g, &; = 11.8 gy, 6 =
15.5 S/m.

The frequency-dependent per unit length capacitance

and conductance parameters for coplanar strip interconnects
structure are shown in Fig. 3.
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Fig. 3. The frequency response of (a) conductance per unit
length and (b) capacitance per unit length. The solid lines in
the figures are obtained with our model, and the dashed lines
are the result from the spectral domain approach.

It can be seen that the frequency response calculated
by using new formulation (point matching method with
cosine Fourier series) is in very good agreement with
that computed from the quasi-analytical analysis [6]. As
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expected, the lossy silicon substrate has a significant
impact on the frequency-dependence of the line
parameters of coplanar strip interconnect. It can be seen
that the conductance per unit length G rapidly increases
(see Fig. 3a) in the lower frequency range while the

capacitance per unit length C decreases (see Fig. 3b).

EXAMPLE 2

As the second application, the distributed capacitance
and conductance per unit length for two coplanar
coupled interconnect lines shown in Fig. 4 is considered.

This
following electrical and geometrical parameters:

symmetric interconnect geometry has the

ew=2.0pum, wy =20 um, s =2.0 pm, s, = 100 pm,
tox = 0.50 pm, t; = 500 pm, g,x = 3.9 gy, 5= 11.8
€, ¢ =100 S/m.
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Fig. 5. Self and mutual shunt admittance components: (a)
conductance per unit length and (b) capacitance per unit length.

For comparison, the same symmetric coupled strip

coplanar interconnect problem is also rigorously solved
by using spectral domain approach [6] with Chebyshev
polynomial basis functions weighted by appropriate edge
factors. The conductance and capacitance per unit length
of the coupled interconnects are calculated by using our
point matching method as a function of frequency (f =0
- 20 GHz), and compared with those of the spectral
domain approach (full-wave solvers). We can see that the
calculated results by our method are in very good
agreement with the rigorous full-wave method solutions
for whole frequency range. A comparison of the
frequency response of the point matching-cosine Fourier
series approach with that computed by the spectral
domain technique [6] (Fig. 5a and b) shows that our
approach yields very good results with little computation
efforts.

V. CONCLUSION

We have presented a point matching method and
cosine Fourier series approach of single and coupled
coplanar interconnect lines on lossy silicon substrate
based on the quasi-stationary field analysis. Frequency-
dependent values for the capacitance and conductance
per unit length matrices have been calculated by a very
simple formulation (no iterations needed) of the problem
that is well suited for computer simulations with little
programming cffort.
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