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J—equivalence of representations of finite

group G
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Abstract

In this paper we consider the topological properties of 6, and show that the

induced map & is well defined and renders the diagram commutative.

0. Introduction

K-theory was introduced by M.F. Atiyah and F. Hirzebruch, after the original idea
was suggested by A. Grothendieck. The Bott periodicity theorem is essential for the
development of the theory. There are important applications of K-theory to differential
topology, such as the Riemann-Roch theorems for differentiable manifolds (due to
Atiyah and Hirzebruch) [3], [4], the solution of the vector field problem on spheres (due
to J. Adams) [1], and applications to immersion and embedding problems. The concept
of differentiable manifolds and the study of their topological structures or global
properties have their origins in Poincare’'s work. However, the progress of research has
been slow, except that important results have been obtained concerning homological
properties of * manifolds and topological structures of lower-dimensional manifolds.
Development of research has been remarkable, and in addition to classical results such
as H. Whitney's embedding theorem [9], the triangulability of S. Cairns [5], and Morse
theory [8], we have the theories of fiber bundles, characteristic classes, and homotopy.
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J—-equivalence of representations of finite group G

1. Preliminaries

Two unitary representations E, F of an arbitrary finite group G are said to be
J-equivalent if there are G-maps from S(E) to S(F) and from S(F) to S(E) both
of degree prime to the order of G. If E is a representation, denoted by  [E] its class
in R(G) and if T(G) is the subgroup consisting of elements [E] — [F] where E and
F are J-equivalent, define J(G) = R(G)/ T(G).

Define a A-ring to be a commutative ring R with identity and a countable set of

maps A”: R— R such that for all x, ye R
@ A’z =1
® A'(x) ==x
@ x4y = XD
If ¢is an indeterminate, for x & R define:
@ Afx) = ’go/l”(x)t”

(&) Az + v) = A(x)A(»)

The ring Z of integers may be given a A-structure by defining A,(1) = 1 + 2 m,¢"

where m; = 1.

The bott cannibalistic class 6, is a natural exponential map given for a one
dimensional element x by

0,x) =1+ x+ - +x* 1,

Definition 1.1. 7 is said to. be a special y-ring if it is a commutative ring (without

identity) with operations {7‘} such that there is an augmented A-ring R with T as
kernel of the augmentation.

Definition 1.2. Two unitary representations E, F of a finite group G are said to be
J-equivalent if there are G-maps @: S(E)— S(F), 8: S(F)— S(E) each of degree
prime to the order of G.

If E, F are J-equivalent, write E~ F.
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Let E be a unitary representation space of G, E* its one-point compactification.
Then using Kg-theory with compact supports we can introduce Kg(E) = Ko(E*, +).
It is a module over Kg(point) = R(G). The main theorem of the subject, as proved in
[2] asserts that K;(E) in a free module over R(G) with a canonical generator ug.
Moreover the method of proof in [2] shows also that the map
;' = Ki(E)—> K;(P(E®1)) is injective, where P(E®1) is the projective space

associated to E@®1 (1 denoting the trivial representation C) and ;* is induced by the
open inclusion j: E—P(E®1) given by j(w) = (u,1). If & is the class of the
standard line bundle H over P(E@®1), the image of ur is [2]

I (ug) = 2(=1)"WA(E).

If ::P(E)-P(E®1) is the natural inclusion then 77=0 and so
2U=1)"(" (W) A(E) = 0 in Ks(P(E)).
Replacing E by E@® 1 we deduce the equation
2(—1)WA(EDL) =0
or equivalently

(1= DI~ WA(E) =0 ——mmmm=mmmmmmmmmmn (1

From these facts it follows that we can identify Kg(E) (as A-ring) with the R(G)
-module. To see this we map an indeterminate & to &~ 'e Ks(P(E®1)). This

induces a homomorphism

a: R(G)E'_’]‘KG(E)

in which
a(X(=1)"p" " "A(E)) = h_"(2(— DR A(E))
= 2(— D)'WAI(E) (by (1)
= j.(#z).

I(x) is the ideal in R[£] generated by

L(E; x) = En - Al(x)é”"l + e + (_ 1)n/1n(x)
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J-equivalence of representations of finite group G

Proposition 1.3. Let R,=I(x)/I{(x+1) then R, is a free R-module on one
generator x,, where g, is the image of L(&, x) in R,, R, is a special y-ring (a
special A-ring without identity) and for z€ R

@) Tz p) = T(2) - T(p)

() T*p,) = 04(x) ey

proof. L(&, x+1)=(&—1)L(&, x) and so if p, is the image of L(€, x) is R, and
7 is the image of &, we see that (— 1)g, =0 ie. 7- .. Any element in I(x) is
uniquely of the form f(&)L(E&, x) for f(€) = R[&] and the image of f(&)L(&, x) in R,
is f(pp, = fQ)p, since pu, = p,. So R, is an R-module on the generator p,. If
aeRand a+ p, =90, then a+ L(£, x)=I(x+ 1) and this implies a =0, so R, is a

free R-module.

We can now read off the action ¥* on Kg(E). Namely we have
T (zpp) = ¥(2) - T (pg) —————-mmmmmmmmmm e (2)
w(#E) = 0,(E) + pp ———————mm—m—m—— oo (3)

The structure of Ks(P(E)) is also known - it can be easily deduced from the main

theorem of [2] by various methods - and one has
K (E)= R(G)[€1/ I(E).

Suppose now that E, F are two unitary representations of G, and suppose we have
a G-map O: S(E)— S(F). Extending radially to the balls @ induces the suspension
Qo: B(E)/ S(E)—>B(F)/S(F). Since we have the obvious identification of

B(E)/ S(E) with E' we obtain an R(G)-homomorphism of A-rings

0': Ko(F)— Kg(E).

Since these are free module there is a uniqgue ze& R(G) such that @'(ug) = zpg.

Applying ¥* to this and using the formula (1) for E and also for F we obtain

0,(F)zpg = 0,(E) T*(2) pg.

Since ug is a free generator we deduce
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0,(F)z = 6,(E) ¥*(z2).

It remains to show that e(z) = deg ®. This is straightforward.
The inclusion of the trivial group 1 in G induces the maps
fer Kg(E)—K(E), e: R(G)—~R(1)=2Z
which forget the G-structure. Since K;(E) is an R(G)-module in a natural way, fx

is equivariant, that is to say

 fe(zpg) = €(2)pg, z€ R(G)., ——————————mmmm (4)
0: S(E)— S(F) induces @': K(F)— K(E) where
O (up) = deg @ + pp. —=mmmmmmmmmm——mm——mm e (5)

Naturally, the diagram

¢.
Ko(F) ———> K¢(E)

\L Ir l I
ml

K(F) S K(E) commutes.

From (4), (5), deg ® = e(2).
We summarize the results above in:

Proposition 1.4. Let E, F be unitary representations of a finite ‘group G. If
@: S(E)—»S(F) is a G-map of ‘degree 7 there is an element ze< R(G) of

augmentation » such that

0k(f)2 = Bk(E) W’k(z) .

2. Main results

Given a G-map @: S(E)— S(F) of degree 7 there is an element z€ R(G) such
that &(z) = » and 6,(F)z = 6,(E)¥*(z). Suppose G i$ a p-group. If » is prime to
p, since e(T2)) =17, r 'z and P(r '2)el+ NG CZ,QR(G). For (k p)=1,
we then have, in 1+ T(G), the equation: Sl P

- 119 -



J-equivalence of representations of finite group G

G,(LE1 = [FD) = 7r 1z - [¥(r 12)] L.

If ¢:1+ I(G)— (1 + I(®)r is the canonical map, we therefore have:

Proposition 2.1. Let G be a p-group and K be prime to p. If there is a G-map
®: S(E)— S(F) of degree prime to p, then [E] — [F] is in the kernel of the map
cO: I(G)— (1 + T(O)r.

Let e: R(G)— Z be the augmentation induced by the dimension of a representation
and let I(G) = Kere, then R(G) = Z® I(G) as abelian groups.

If E and F are J-equivalent, then there is a map @: S(E)— S(F) of degree prime
to the order of the group, and for the degree to be defined, the dimensions of E and F
must be equal. This shows T(G)C I(G).

Define J(G) = I(G)/ T(G), then J(G) = Z® J(G) as abelian groups.
It is also easy to see that WAG) C I(G) and that, in the usual notation,
KG)r, = I(G) | WXG)
and R(G)r,= Z® I(G)r,

This implies:

Proposition 2.2. If G is an M-group (in particular if G is a p-group), there is a

canonical epimorphism  v: R(G)r,—J(G) and this induces an epimorphism

: I(G)r,— 1(G).
Corollary 2.3. If E and F are J-equivalent, then [E] — [F] is in the kernel of c§;.

T(G) is the subgroup of I(G) consisting of elements [E] — [F] where E, F are

J-equivalent, we have:

Corollary 2.4. T(G) C Kerc@,.

But the followingv diagram commutes:
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I(G) %’e 1+ I(G)

L L

o)y — " G+ W@y, TS (1)

where d is the canonical map. So T(G)C Ker(8,)rd. Immediately we see that (‘Hk) r
factors through the group J(G) = I(G)/ T(G). Define 8;: J(G)— (1 + I(G)), by
9,(x + T(G)) = 0,(x) for x= I(G) then:

Proposition 2.5. The following diagram commutes for a p-group G, where v is the
canonical epimorphism of (Proposition 2.2).

I(G)r% J(G)

(6\4 J/ g

a+ ey, T @
We have the commuting diagram:
I(G)r
|
I(G)I‘————-————> (1 + /j)p ______________________ (3)

Fitting together diagram (2), (3) with k=17 (the generator of I'), we find the required

diagram for a p-group of odd order:

0

l

KO)r ——> @) ——> 0
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J—equivalence of representations of finite group G

Lemma 2.6. For a p-group of odd-order, » is an isomorphism.

proof. Chase an element round diagram (4).

RGO r=Z+IGrp, (G)=Z+ HG) and v:R(G)r—J(G) is given by

v(n+a) =n+ via) for ae I(G)r, lemma 2.6 implies the main theorem.

Theorem 2.7. For a p-group of odd order N = p°, v: R(G),—J(G) is an

isomorphism.

If G is a p-group of odd order, if [E]l] — [F]l1=[E®c] ~[F®cle T(G), then
[E] — [F]le W{G). For conjugate representations, we may construct J-equivalences

and so E, F are truly J-equivalent.
Returning to the diagram (4), trivial diagram chasing shows:
Proposition 28. 8;: J(G)— (1 + I(&))r is a monomorphism.

From Proposition 2.1, if there is a G-map @: S(E)— S(F) of degree prime to p,
then the image of [E] — [F] in J(G) is in the kernel of &,. Proposition 2.8 gives:

Theorem 29. If there is a G-map O: S(E)— S(F) of degree prime to p, then E

and F are J-equivalent.

We now consider W(G), the subgroup of I(G) generated by {x — ax}, x< R(G),
eI, If E is irreducible, it is trivial to see that «F is irreducible also. Thus if
&, -, &, are the classes of irreducible representations, they split up into equivalence
classes where each class consists of an irreducible representation &, and the elements

of the form aé&, for asI.

We order the classes or irreducible representations &, &, -+, &, -, &, so that no
two of &, -+, & are conjugate under the action of I' and their conjugates exhaust
&, .&s. Then W(G) is generated by elements of the form {& — a&;} where
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1<i<s,asl.
Suppose now E,F and J-equivalent and E is irreducible. We may suppose
[E]=¢. U [F]= 121 n:&, then [E]— [F]=¢&— 2n;&e WG) by theorem 2.7.

Since #;=0 for i=1, -+, m, immediately we see that [F] = &, for some ee<T.
We have:

Theorem 2.10. If G is a p-group of odd order and E is an irreducible unitary
representation of G, then for any unitary representation F, there is a G-map

@: S(E)— S(F) of degree prime to p if, and only if, F = eFE for some eI,
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