Rheology and morphology of concentrated immiscible polymer blends

  • Published : 2001.12.01

Abstract

The phase morphology is an important factor in the rheology of immiscible polymer blends. Through its size and shape, the interface between the two phases determines how the components and the interface itself will contribute to the global stresses. Rheological measurements have been used successfully in the past to probe the morphological changes in model blends, particularly for dilute systems. For more concentrated blends only a limited amount of systematic rheological data is available. Here, viscosities and first normal stress differences are presented for a system with nearly Newtonian components, the whole concentration range is covered. The constituent polymers are PDMS and PIB, their viscosity ratio can be changed by varying the temperature. The data reported here have been obtained at 287 K where the viscosities of the two components are identical. By means of relaxation experiments the measured stresses are decomposed into component and interfacial contributions. The concentration dependence is quite different for the two types of contribution. Except for the component contributions to the shear stresses there is no clear indication of the phase inversion. Plotting either the interfacial shear or normal stresses as a function of composition produces in some cases two maxima. The relaxation times of these stresses display a similar concentration dependence. Although the components have the same viscosity, the stress-component curves are not symmetrical with respect to the 50/50 blend. A slight elasticity of one of the components seems to be the cause of this effect. The data for the more concentrated blends at higher shear rates are associated with a fibrillar morphology.

Keywords

References

  1. J. Rheol. v.44 Almusallam,A.S.;R.G.Larson;M.J.Solomon
  2. J. Rheol. v.44 Astuc,M.;P.Navard
  3. Trans. I. Chem. E. v.69 Chesters,A.K.
  4. Phys. Fluids v.18 Choi,S.J.;W.R.Schowalter
  5. Phys. Fluids v.10 Cristini,V.;J.Blawzdziewicz;M.Loewenberg
  6. Ph.D. thesis, T.U. Eindhoven de Bruijn,R.A.
  7. J. Rheol. v.39 Friedrich,C.(et al.)
  8. J. Non-Newtonian Fluid Mech. v.77 Grmela,M.;A.Ait-Kadi;L.A.Utracki
  9. Rheol. Acta v.38 Guido,S.;M.Simeone;M.Villone
  10. Polymer v.39 Huitric,J.(et al.)
  11. Ph.D. thesis, T.U. Eindhoven Janssen,J.
  12. J. Rheol. v.45 Janssen,K.M.B.;W.G.M.Agterof;J.Mellema
  13. J. Non-Newtonian Fluid Mech. v.93 Jansseune,T.(et al.)
  14. J. Non-Newtonian Fluid Mech. v.99 Jansseune,T.(et al.)
  15. Langmuir v.17 Jeon,H.S.(et al.)
  16. Int. J. Multiphase Flow v.13 Khakar,D.V.;J.M.Ottino
  17. A.I.Ch.E.J. v.47 Knops,Y.M.M.(et al.)
  18. J. Rheol. v.38 Lee,H.M.;O.O.Park
  19. J. Fluid Mech. v.320 Li,X.;R.Charles;C.Pozrikidis
  20. Phys. Fluids v.12 Li,X.;Y.Y.Renardy;M.Renardy
  21. A.I.Ch.E.J. v.46 Lyu,S.P.;F.S.Bates;C.W.Macosko
  22. J. Fluid Mech. v.321 Loewenberg,M.;JE.J.Hinch
  23. J. Non-Newtonian Fluid Mech. v.78 Maffettone,P.L.;M.Minale
  24. A.I.Ch.E.J. v.44 Minale,M.;J.Mewis;P.Moldenaers
  25. Phys. Rev. A v.35 Onuki,A.
  26. Rheol. Acta v.29 Palierne,J.F.
  27. J. Rheol. v.45 Peters,G.W.M.;S.Hansen;H.E.H.Meijer
  28. Ann. Rev. Fluid Mech. v.16 Rallison,J.M.
  29. Polym. Eng. Sci. v.37 Sigillo,I.(et al.)
  30. Ann. Rev. Fluid Mech. v.26 Stone,H.A.
  31. Macromolecules v.28 Sundaraj,U.;C.W.Macosko
  32. J. Rheol. v.38 Takahashi,Y.(et al.)
  33. J. Rheol. v.35 Utracki,L.A
  34. Rheol. Acta v.36 Vinckier,I.;J.Mewis;P.Moldenaers
  35. A.I.Ch.E.J. v.44 Vinckier,I.(et al.)
  36. Rheol. Acta v.38 Vinckier,I.;J.Mewis;P.Moldenaers
  37. J. Fluid Mech. v.426 Wetzel,E.D.;Tucker,Ⅲ C.L.
  38. J. Rheol. v.42 Yamane,H.(et al.)
  39. Colloids & Surf. A v.144 Yuan,X.F.;M.Doi
  40. J. Rheol. v.43 Ziegler,V.;B.A.Wolf
  41. J. Chem. Phys. v.95 Doi,M.;T.Ohta