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An Efficient Algorithm to Develop Model for Predicting Bead Width
in Butt Welding |

I. S.Kimand J. S. Son

Abstract

With the advance of the robotic welding process, procedure optimization that selects the welding procedure and
predicts bead width that will be deposited is increased. A major concern involving procedure optimization should define
a welding procedure that can be shown to be the best with respect to some standard and chosen combination of process
parameters, which give an acceptable balance between production rate and the scope of defects for a given situation.
This paper presents a new algorithm to establish a mathematical model for predicting bead width through a neural
network and multiple regression methods, to understand relationships between process parameters and bead width, and
to predict process parameters on bead width for GMA welding process. Using a series of robotic arc welding, additional
multi-pass butt welds were carried out in order to verify the performance of the neural network estimator and multiple
regression methods as well as to select the most suitable model. The results show that not only the proposed models can
predict the bead width with reasonable accuracy and guarantee the uniform weld quality, but also a neural network

model could be better than the empirical models.
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1. Introduction

The GMA welding process, sometimes called Metal
Active Gas (MAG) welding, is a welding process that
yields coalescence of metals by heating with a welding
arc between continuous filler metal (consumable)
electrode and the workpiece. The continuous wire
electrode, which is drawn from a reel by an automatic
wire feeder, and then fed through the contact tip inside
the welding torch, is melted by the internal resistive
power and heat transferred from the welding arc. Heat is
concentrated by the welding arc from the end of the
melting electrode to molten weld pools and by the
molten metal that is being transferred to weld pools.
Molten weld pools and electrode wire are protected from
contaminants in the atmosphere by a shielding gas
obtained from an externally supplied Ar, CO, or
mixtures Ar with O,, H,, He, or CO, in various
combinations".

Process parameters for the GMA welding should be
well established and categorized for the robotic welding
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system. With the increase of automation in arc welding,
the selection of welding procedure must be more specific
to ensure that adequate bead quality is obtained. Further,
to get the desired quality welds, it is essential to have a
complete control over the relevant process parameters to
obtain the required bead geometry and shape
relationships on which is based on capacity of a
weldment?,

Numerous attempts have been reported to develop
mathematical models relating process variables and bead
geometry for the selection and control of the procedural
variables®>. Chandel® first applied this technique to the
GMA welding process and investigated relationships
between process variables and bead geometry of bead-
on-plate welds deposited by the GMA welding process.
These results showed that arc current has the greatest
influence on bead geometry, and that mathematical
models derived from experimental results can be used to
predict bead geometry accurately.

Recently, Artificial Intelligence(Al) such as expert
systems, artificial neural networks, fuzzy logic is a key
technique for controlling and monitoring the robotic
welding process. Technique of neural network offers
potential as an alternative to standard computer
techniques in control technology, and has attracted a
widening interest in their development and application.
Development of the intelligent system for prediction of
process parameters for robotic arc welding has been
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Table 1 Chemical compositions of BV-AH 32 steel

C Si Mn P S Cr Ni Cu Nb A\ Mo
0.16 0.42 1.5 0.018 0.005 0.03 0.03 0.02 0.003 0.005 0.03
Table 2 Mechanical properties of BV-AH 32 steel
Yield strength Tensile strength Elongation Young’s modulus
(kgf/mm2) (kgf/mm2) (%) (kgf/mm®)
41.02 57.35 20 21,740

described in the literature”'?. Cook'® has preliminarily
worked at the development of intelligent control systems
incorporating  ANN(Artificial Neural Network). Also,
Srikanthan and Chandel'? proposed the steps adopted to
construct the neural network model for GMA welding
and evaluated the proposed neural network model.

The objectives of this study are to investigate the
results obtained in a detailed experimental study
regarding the effects of process parameters on bead
width, to develop a new algorithm involving the use of a
neural network as well as multiple regression methods in
the prediction of process parameters on bead width for
butt GMA welding process, and to finally select suitable
mode! that provided the weld final configuration and
properties as output and employed the process
parameters as input.

2. Experimental work

A number of problems related to the robotic GMA
welding process include the modeling, sensing and
control of the process. Statistically designed experiments
that are based upon factorial techniques, reduce costs and
provide the required information about the main and
interaction effects on the response factors.

Tack welding
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Fig.1 Welding specimen of pass number
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Experiments were designed for developing a new
model to correlate independently controllable process
parameters. The process parameters included in this
study were three levels of pass number (2, 3 and 4)
shown in Fig. 1, three levels of arc current (170, 220 and
270 A), three levels of welding voltage (23, 26 and 28 V)
and 12 to 50 c/min of welding speed that depends on
weld quality. All other parameters except these
parameters under consideration were fixed. The welding
facility was chosen as the basis for the data collection
and evaluation.

The base material used for this study was the BV-
AH32 steel with 12 mm in thickness for multi-pass butt
welding. Chemical compositions and mechanical
properties of BV-AH 32 steel are shown in Tables 1 and
2. This plate was cut into 300200 mm pieces, and both
surfaces were sand blasted to remove dirt and oxides.
GMA/CO,; welding system and an automatic traveling
unit were combined to make an automatic process
system. The shielding gas composition was Ar 80%, CO,
20%. Experimental test plates were located in the fixture
}ig by the robot and the required weld conditions were
fed for the particular weld steps in the robot path. With
power supply and argon shield gas turned on, the robot
was initialized and welding was executed.

This continued until experimental runs were
completed. To measure the bead width, the transverse
sections of each weld were cut using a power hacksaw
from the mid-length position of welds, and the end faces
were machined. Specimen end faces were polished and
etched using a 2.5% nital solution to display bead width.
The schematic diagrams of bead width employed were
made using a metallurgical microscope interfaced with
an image analysis system'”. Tmages are represented by a
256 level gray scale, and the program can be employed
to identify bead width. The fractional factorial matrix
was assumed to link the mean values of the measured
results with changes in the four process parameters for
determining bead width. The experimental results were
analyzed on the basis of relationship between process
parameters and bead width of the GMA welding process.
Fig. 2 identifies the major input and output parameters
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associated with the quality characteristics of a GMA -

welding process.
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Fig.2 Input and output parameters of the GMA welding
process
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3. Results and discussion

3.1 Neural network model

Artificial neural network is composed of many
nonlinear computational elements operating in parallel.
Learning in a neural network means finding an
appropriate set of weights that are connection strengths
from the elements to the other layer elements. In this
study, the back-propagation algorithm of neural networks,
which is one of various learning modes, is employed and
shown in Fig. 3. The squared error(£,) and the weight-
change equation on the output layer are given :

1
£, =Ezk:(Tpk_0pk)2 (1)
OF
P _ _I_Z_a_(Tpk _Opk)Z
= —; (Tpk -0, e '(netpk)W,gfj '(netpj)ij
Wi+ =W, (D+ad,i, + mAW,(i-1) 3)
by =| o T X, 46, @
v aWki = 5<% pf
S =T = O &)
where,
W, : the weighting between the interconnection
of the i th and j th processing
a : the learning-rate parameter
m  : the momentum coefficient that increases

the speed of convergence for learning the
neural networks

: an input pattern
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f'() :aderivative of sigmoid transfer
function for each layer

T : a teaching data

pk
O,,  : output data of the neural networks.
Input layer Hidden layer Output layer
Layer

Welding speed

Z>O Bead width

Fig.3 Optimal neural network architecture for predicting
bead width

Welding current

Arc voitage

The neural networks were then trained and tested
against the hidden examples. The numbers of the
samples for training and testing are 54 and 27,
respectively. The training process was a lengthy process
conducted on a UNIX SUN workstation. With a learning
rate of 0.6 and a momentum term of 0.9, the network was
trained for 200,000 iterations. During the training
process, connection weights increased and decreased as a
neural network settled down to a stable cluster of
mutually excitatory nodes.

3.2 Development of mathematical models
3.2.1 Linear model

The response variable W can be predicted by linear
combination of independent variables as follows :

W=ky+k I+k,-S, +k; -S, +k, -S; +ks -S, +kV/ (6)

where,

W :bead width

I : welding current

S, : welding speed for 1 pass
S, :welding speed for 2 pass
S,  :welding speed for 3 pass
S, : welding speed for 4 pass
V' :arc voltage

kok,kyksk ks - coefficients to be estimated
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These analyses were carried out using a standard

statistical package program, SAS in the PC'®. Based on

the regression analysis using the least square method from
experimental results(bead width) and significance at the
1% level on Fisher’s F-ratio that represents the actions and
interactions shown to be important, the following
equations can be estimated:

2 pass

W =-33.292-0.1057 - 0.405S, +3.250V )
3 pass

W =26.108+0.542S, — 0.233S, - 0.73% ®)
4 pass

W =84.765+0.3921 —-0.651S, —4.889V ©)

3.2.2 Curvilinear model

The relationships between bead width as a dependent
parameter and process parameters including pass number,
welding speed, welding current and arc voltage as
independent parameters can be expressed by following
equation,

W=c 88585 85y (10)

The curvilinear equations for muiti-pass are is as follows:

2 pass

W - 10—2446 1—2.093S2—0.435V6.510 (l l)
3 pass

W — 102.906 S21.275SS—0,333V—2.180 (12)
4 pass

W — 103.261 14.728S4—0.884V~8.218 (13)

To check the adequacy of the developed mathematical
models, the standard error of estimate, coefficient of

multiple correlation and coefficient of determination for
the equations (7)-(9) and (11)-(13) are given in Table 3.
According to Table 3, the value of coefficient of multiple
correlation of linear and curvilinear equations for 2 pass
and 3 pass is higher than those of equations for 4 pass, but
all equations are equally useful for prediction of bead
width due to small differences. :

3.3 Selecting the most accurate model

To ensure the accuracy of the developed bead width
models based on a neural network and multiple regression
methods and to survey the spread of the values, the
experimental and theoretical results using the developed
equations were compared in Figs. 4-6. The line of best fit
using the plotted points was calculated using the
regression. Fig. 4 shows a plot of the measured bead width
versus the calculated values for 2 pass, whereas Fig. 5
presents a plot of the measured bead width versus the
calculated values obtained using the developed models for
3 pass. However, the calculated values obtained using the
neural network model for 4 pass showed better accurate
than those of the developed models using multiple
regression methods as shown Fig. 6. It is evident from
these results that reasonable agreement between
experimental and calculated bead width is shown even
when the scatter about the calculated results using two
empirical equations (linear and curvilinear) for 4 pass is
considerable.

24

0
N
®

Cunilmesr

20

Calculated bead width {(mm)

14 16 18 20 22

Measured bead width (mm

Fig.4 Comparison of measured and calculated results
using a neural network and multiple regressions for 2 pass

Table 3 Analysis of variance tests for mathematical models for bead width

Number of Stand error Coefficient of Coefficient of
equation of estimate multiple correlation determination (%)
7 0.993 0.987 97.9
8 0.969 0.939 90.3
9 0.881 0.776 64.1
11 0.989 0.979 96.6
12 0.958 0.918 86.8
13 0.805 0.648 ' 43.7
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Fig.5 Comparison of measured and calculated results
using a neural network and multiple regressions for 3
pass
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Fig.6 Comparison of measured and calculated results
using a neural network and multiple regressions for 4
pass

In order to select the most accurate model, additional
experiments were carried out. Table 4 showed process
parameters and measured results for the additional
experiment. All the predictive equations developed have
been compared with their corresponding experimental
results. The experimental results and welding conditions
including number of pass, welding speed, arc current and
welding voltage are employed as the input parameter.
Output parameter is the bead width calculated by each
model and the corresponding errors of prediction. To
choose the most accurate algorithm, the predicted results
from the established models are plotted in Fig. 7 together

with the experimental results as listed in Table 4.
According to Table 4 and Fig. 7, the neural network
model gives the best fit to the experimental results and
produced better prediction of the bead width than the
developed empirical equations.
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Fig.7 Comparison of measured and calculated results
using a neural network and multiple regressions

4. Conclusion

The effects of process parameters on bead width have
been studied using the robotic GMA welding process,
and the following conclusions have been reached.

1. Process parameters such as number of pass, welding
speed, arc current and welding voltage influence bead
width for GMA welding process.

2. A neural network model and two regression equations
(linear and curvilinear) developed from the
experimental data in the course of this work can be
employed to conduct a systematic study on the
efficient algorithm as well as to control the process
parameters in order to achieve the desired bead width.
Neural network models are capable of making bead
width prediction of the experimental values with
reasonable accuracy.

3. The developed models are able to predict process
parameters required to achieve desired bead width, to
help the development of automatic control system as
well as expert system, and to establish guidelines and

Table 4 Process parameters and results for the additional experiment

Trial. No. of Weldin Welding Welding Welding Welding Are
No . z;ss current(i) speed speed speed speed voltage(V)
: P 1(cm/min) 2(cm/min) 3(cm/min) 4(cm/min) g
1 2 250 26 26 - - 27
2 2 200 22 18 - - 25
3 3 250 34 34 34 - 27
4 3 200 27 27 22 - 25
5 4 250 37 37 45 45 26
6 4 200 . 28 28 33 33 24
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criteria for the most effective joint design.

In this work, the developed formulae based on
experimental results are valid for current process
parameters and bead width. It is proposed that these
models are extended to shielding gas composition, weld
joint position, polarity and many other parameters which
are not included in this research.
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