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Abstract. This paper considers some reliability indices, such as avail-
ability, average availability, reliability and steady state availability, of a
redundant system with the function of switchover processing. We also
derive the confidence limits for steady state availability of such system.
The system, which is considered in this paper, consists of an active unit,
a standby unit and a switchover device. In addition, the switchover pro-
cessing is controlled by a control module. The effect of failure of the
control module is taken into account to develop our reliability model for
the redundant structure. Numerical examples are presented to illustrate
our results.
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1. INTRODUCTION

Redundancy is defined as the use of additional components or units for satisfac-
tory operation of a system and the standby redundant structures such as electric
power generator, UPS and airplane jet engines are widely used to improve the sys-
tem reliability. In a two-unit repairable standby redundant system, the standby unit
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starts operating immediately upon the failure of the active unit and once the failed
active unit is repaired, it assumes the position of standby unit. Thus, these two units
alternate their positions either active or standby whenever the failure or repair oc-
curs. Depending on the readiness(or consequently, the failure rate) of standby unit,
it is classified as hot, cold or warm standby unit. The cold standby unit does not
fail when it remains standby and thus, the failure rate of cold standby unit equals
zero. The failure rate of hot standby unit is the same as that of active unit, while
the warm standby unit has a smaller failure rate than the active unit, but its failure
rate is greater than zero. More details are given in Elsayed (1996). Kumar and
Agarwal (1980) also present excellent summaries for the cold redundant structure.

It is common that the performance of the system is analyzed with respect to
its reliability characteristics, such as reliability function, availability, MTBF, mean
residual life function and so on. One of the most widely used performance criteria of
repairable systems is an availability which is defined as the probability that a system
is operating satisfactorily when it is required to perform the given mission. Because
of the fact that the availability is an important measure to evaluate the performance
of the system, many researchers have worked on these subjects quite extensively.

Lim (1996) and Lim and Koh (1997) study a redundant system with the function
of switchover processing which consists of three units ; an active unit, a standby unit,
a switchover device. Figure 1 shows a reference model for such a redundant system.
These articles assume that the failure rate of the system increases by installing the
switchover processing, since the failure of the control module can cause the failure of
the system. In order to develop a reliability model, they distribute such increment
of the failure rate to each unit of the system in such a way that the failure rate of
each unit increases by A, = aA, where 0 < a < 1 and X is the failure rate of the
unit without the switchover processing. Note that @ = 0 implies no failure of the
control module.

Control Module

Unit

Switch

Unit —

Figure 1. A model of redundant structure with a function of switchover
processing.

Chandrasekhar and Natarajan (1994) evaluate the 100(1 — ¢)% confidence limits
for the steady state availability of two units cold standby and n units parallel system
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with an additional assumption that an operating unit can also fail while the other
unit is in the second stage of repair.
In this paper, we consider a redundant system with switchover processing dis-
cussed in Lim (1996) and Lim and Koh (1997). In Section 2, we derive several
reliability measures, such as availability, average availability, reliability, steady state
availability and 100(1 — €)% confidence limit for steady state availability. Section 3
presents numerical examples to illustrate our results.
Throughout this paper, we assume the followings:
1) All units are independent and have exponential life distributions, each unit having
a  mean life of 1/)\, and the repair times of unit and switch are exponentially
distributed

with means of 1/u and 1/7, respectively.
2) The probability of successful switchover operation is assumed to be equal to p.
3) The type of standby unit in the redundant system is hot standby unit.

2. MEASURES FOR HOT STANDBY REDUNDANT SYSTEM

We define four states of the system and draw the state transition diagram(STD)
as shown in Figure 2. The states 2 and 3 represent the failure of the system. The
state 2,

State Description
0 Duplex
1 Simplex
2 Uncoverage Outage
3 Failure

Figure 2. State transition diagram of HSRS.
which represents uncoverage outage, is caused by the failure of active unit while the
control module is in the failure state and the state 3 is due to the failures of both
units.

2.1 Time Dependent Transition Probabilities and Related Measures

Let 7, ¢ = 0,1, 2, 3, represent the states of hot standby redundant system(HSRS)
and let p;(¢) be the probability that the system is in state 7 at time ¢. The flow rate
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equations can be established by consideration of the fact that the flow rate out of
the system must be equal to the flow rate into the state. Thus, we have

o(t) = —2(1+ a)Apo(t) + ppr(t)

1(t) —(p+ 1+ a)N)p1(t) + (1 +p)(1 + a)Apo(t) + yp2(t) + pps(t) (2.1)
pa(t) = —p2(t) + (1 — p)(1 + a)Apo(t)

5(t) = —ups(t) + (1 +a)pi(t),

where pj(t) = dp;(t)/dt, i =0,1,2,3.

To solve these equations simultaneously for po(t) and p;(t), we may apply the
Laplace and the inverse Laplace transformations. The Laplace transform of a func-
tion f(¢) is defined as

e o]
flo) = [ exp(=st)f (0.
Note that for i = 0,1,2, 3, the Laplace transform of p}(¢) is obtained as
pi(s) = —pi(0) + spi(s).
Using the initial conditions, pp(0) = 1 and p;(0) = p2(0) = p3(0) = 0, it is straight-
forward to obtain
po(t) = Niexp(—pit) + Noexp(—pat) + N3 exp(—03t) + Ny (2.2)
and
p1(t) = My exp(—Lit) + Mz exp(—fat) + M3 exp(—[st) + My, (2.3)
where —f’s are the roots of the following third order equation
2+ Cu+30+a)A+y)s+ (/u2 +pA(1+a)(3—-p)+ (2u+ 3(1 + a)A)y
+ 201+ a2)/\2>s +2OAQ+ @)1 —p) +9) + 2271 + ) (u + (1 + a)))
= 0
and N; and M; are
4
N = G=B) =) ) /T 6 - )
k=1

k#j
and

4
M; = A+ Q)1+ ) - ) - 6) [ TL6: - 5)

K#i



Sang-Wook Shin, Chong Hyung Lee, Jae-Hak Lim and Dong Ho Park 111

for j =1,2,3,4 and r; and 72 are (—((1 +a)A+2p) + VAl + a)(A(1 + a) + 4u))/2
and (—((1 4+ @)X +2u) — /A1 + @) (A1 + @) + 4u))/2, respectively.

Given the expressions for pg(t) and pq(t), we evaluate the following reliability
measures for HSRS.

Availability and Average Availability of HSRS
The availability of HSRS at time ¢, A(¢), and average availability of the system

in (0,t], A(t), are obtained as

A(t) = po(t) +pi(t)
3
= Y (Ni + M;) exp(—fit) + (Ny + My)

=1

and

A = % /OtA(u)du
3
= S (Ni+ M)(1 - exp(—Bit))/(Bit) + (Na + My),

=1

respectively. The expected working time of HSRS during the time interval (0,%] can
be evaluated by E,(t) = fot [po(u) + p1 (u)]du. It follows that the expected down time
of HSRS during (0,t], E4(t), is t — Ey ().

Reliability and Mean Time to First Failure of HSRS

By letting p and « approach to zero, A(t) can be interpreted as the reliability
of HSRS. In this case, the system is considered as a nonrepairable system and its
reliability is obtained as

R(t) = (1+p)exp(—(1+ a)At) —pexp(—2(1 + a)At)
for t > 0. Thus, the mean time to first failure(MTTFF) of the system is

/000 R(u)du

_2+p
20+ o)A

MTTFF

2.2 Steady-State Transition Probabilities and Related Measures

To obtain the steady-state transition probabilities, we replace p;(t), 1 = 0,1,2, 3,
by constants p;(and thus, p,(t) by 0) in equations of (2.1) and solve these equations
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simultaneously for pp and p;, where p; can be interpreted as a steady-state transition
probability of state . These equations are given as

pp1 = 2(1+a)Apo

b+ (1 +a))pr = (1+p)(1+ a)Apo + vyp2 + up3 (2.4)
(1-p)1+a)dpy = 7p2
(1+a)Ap1 = ups.

Straightforward calculation yields

_ &
e B Y (R s Wy ey e s v g T s - AR A

and

_ 2u(1 + a)A
T R D 7720 R [ Ry T S G

respectively. Therefore, the steady-state availability of the system, denoted by Ap,
is equal to pg + p1. Although it may not be feasible to prove analytically, the value
of A(t) is shown to approach to Ay numerically as ¢t becomes sufficiently large.

The following theorem compares the availabilities of a single component system
and a HSRS. It is well known that the availability of a single component, denoted
by As, is equal to /(A + p).

Theorem 1. Let § = 2)\ + p?/v. Given that (=8 + /62 — 8u((u/v) — 1))/4X <
a < (—2X + /4X2 +8Au) /4N, there exist a p* € [0,1] such that Ag > Agy for
0<p<p*and Ag < Ay for p* <p < 1, where p* = 1—(u—2a(1+a)\)y/p?(1+a).

Proof. We note that Ay is non-decreasing in p because each of py and p; is non-
decreasing in p and Ag is a constant. Hence, it is sufficient to show that when p =
0, As > Ay and whenp =1, Ag < Ap. It is somewhat tedious but straightforward
to show that when p = 0, Ag > Ay if a > (—=d + /0% — 8Au((p/v) —1))/4A
Similarly, we can show that when p =1, As < Ay if a < (—2X + /4A2 + 8Au) /4.
Thus, the existence and uniqueness of p* is established.

2.3 Confidence Limits for Steady-State Availability of HSRS

To derive the confidence limit for the steady-state availability of HSRS, we con-
sider only the special case when the repair rate of switchover system is proportional
to the repair rate of each unit, that is v = cu for some positive constant.

Let X1, X, -, X, be a random sample of times to failure and follow exponential
distribution with mean 1/X, and let Y7,Y2,---,Y;, be a random sample of times
to repair and follow exponential distribution with mean 1/u. We let X and Y
denote the sample means of times to failure and times to repair, respectively, where
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X=L1y0,XandY = L 37, ¥]. It is well known that X and ¥ are the maximum
likelihood estimators(MLE) of 1/4 and 1/, respectively. Thus, the MLE of 8 = \/p
is obtained as 6 = A/f.

Substituting v, given in (2.5) and (2.6), with cu, ¢ > 0, and replacing 6 by 6,
the MLE of steady state availability is obtained as

. 1 )
Ay = 14 2( +a))9

1+2(1+@)f + (1 —p)(1 + a)f/c +2(1 + )202

In order to derive the sampling distribution of 6, we use the well known fact that
2n)X and 2mpY are distributed according to the Chi-square distributions with 2n
and 2m degrees of freedom, respectively. Since the times to failure and the times to
repair are independent, it follows that X and Y are independent. Thus, the random
variable F*, defined by

F* =
2n 2m

has a F-distribution with 2n and 2m degrees of freedom. Let F¢(2n,2m) be the
¢-percentile of F'(2n,2m). Then, a 100(1 — £)% upper confidence limit(UCL) for
steady-state availability of the system is constructed as follows:

_2nAX /2m,u)7 g
é?

1-¢/2 = P[F* > F¢/5(2n,2m))
= PlAy < (1 +2(1 + @)8F, 5(2n, 2m))/(1 +2(1 + @)0F; 5(2n, 2m) +
(1= p)(L + 0)8Fy/p(2n,2m)/c) + 2(1 + ) 262 F25(2n, 2m))].

Note that the second equality holds since Ay is a nonincreasing function of 6.
Thus, a 100(1 — ¢)% UCL for Ay is given by

Aver = (1+2(1+ a)8F;5(2n,2m)) /(1 +2(1 + 0)8Fg (20, 2m) +
(1 = p)(1 + @)BFg/(2n,2m) /c) + 2(1 + )62 F25(2n, 2m)). (2.7)

Using the fact that £/2 = P[F* > Fy_;/5(2n,2m)] and Fy_¢/5(2n,2m) = 1/F¢/3(2m, 2n)
we can derive a 100(1 — €)% lower confidence limit(LCL) for Ay as follows:

Aver = (1+2(1+0)0/Fepp(2m,2n)) /(1 +2(1 + @)/ Fy o (2m, 2n) +
(1 = p)(1 + @)/ (cFg2(2m, 2n))) + 2(1 + )62/ FE5(2m, 2n) |2.8)

From (2.7) and (2.8), we obtain a two sided 100(1 — £)% confidence limit for Ap.
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3. NUMERICAL EXAMPLES

In this section, we evaluate the values of py(t), p1(t), A(t), A(t), Ey(t) and R(2).
To estimate the parameters A, u and 8, we use the following data for times to failure
(Data 1) and times to repair (Data 2), which are obtained under the assumption that
both times follow exponential distributions with means of 1/X and 1/u, respectively.

Datal| 95.7 985 934 972 1005
Data2 | 6.2 38 79 73 54

Based on the data, the MLE of A,  and @ are obtained as 0.0103, 0.163399, and
0.063054, respectively.

For Figures 3 and 4 and Table 1, we set ¢ = 1 and assume that the values of
both p and « are 0.0, 0.3, 0.6, 1.0. Figure 3 presents the graphical behaviors of A(t)
for various p when a = 0.3 and it shows that the availability increases as the value
of p becomes higher. Figure 4 shows that the availability decreases as the value of
a increases for p = 0.9. Table 1 gives the values of po(t), p1(2), A(t), A(t), Ey(t)
and R(t) for « = 0.3 and p = 0.9.

It is easy to obtain for @ = 0.3 and p = 0.9 that the MTTFF is 108.259 and
the steady-state availability is 0.981751. Using the formulas (2.7) ans (2.8), a 95%
confidence limit for the steady-state availability is obtained as (0.91201, 0.99597).

Availability of HSRS
096 098 1.00

0.94

time

Figure 3. Availability of HSRS, A(t), for various p’s with o = 0.3.
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Figure 4. Availability of HSRS, A(t), for various a’s with p = 0.9.

Table 1. Values of py(t), p1(t), A(t), A(t), Ey(t) and R(t) with @ = 0.3 and p = 0.9.

Time(®) |_pol) i) _AQ) A®) Fu®) RO
3 0.938 0.058 0.996 0.998 2.99 0.995
5 0.911 0.082 0.993 0.997 498 0.990
7 0.893 0.098 0.991 0.995 697 0.984
10 0.874 0.114 0.988 0.994 994 0.973
20 0.850 0.133 0.983 0.9%0 19.8 0.927
30 0.845 0.137 0.982 0.987 29.6 0.868
40 0.844 0.138 0.982 0.98 394 0.804
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