Electrochemical Characteristics at Copolymeric film Electrodes of [Ru(v-bpy)$_3$]$^{2+}$ and Vinylbenzoic Acid Modified with Dopamine

Dopamine으로 수식된 [Ru(v-bpy)$_3$$^{2+}$와 Vinylbenzoic Acid의 공중합 피막 전극의 전기화학 특성

  • Published : 2001.11.01

Abstract

The $[Ru(v-bpy)_3]^{2+}$ and vinylbenzoic acid (vba) were electrochemically copolymerized to afford electrodes modified with dopamine to study their properties such as electropolymerization rate, redox process, and electron transfer. The optimum mole ratio of the monomers was 5:2, which gave $1.84{ imes}10^{-2}s^{-1}$ of rate constant for first order reaction, while the ratio of the substances on the copolymeric film produced was 5:1.68. The formal potential produced from the hydroquinone=quinone+$2H^+2e^-$reaction at the electrode of GC/p- $[Ru(v-bpy)_3]^{2+}$/vba-dopamine was 0.17 V in phosphate buffer (pH=7.10). The electrocatalytic rate was $2.58{ imes}10^5cms^{-1}$;2.41 times faster than that of non-modified one. The mass change measured by EQCM was $3.28{ imes}10^3$$gmol^{-1}$ which is larger than that of non-modified one.

$[Ru(v-bpy)_3]^{2+}$와 vinylbenzoic acid(vba)의 공중합 피막전극에 dopamine을 반응시켜 수식된 전극을 제작하고 이 고분자의 중합속도와 산화-환원 및 전자전달 특성을 연구하였다. 두 단량체의 몰비가 5:2일 때 공중합속도 상수는 $1.84{ imes}10^{-2}s^{-1}$이고 중합된 피막상에서 두 성분비는 5:1.68이였다. GC/p-$[Ru(V-bpy)_3]^{2+}$/vba-dopamine형의 수식된 전극에서 hydroquinone=quinone+$2H^+2e^-$의 전극반응에 의한 형식전위는 인산염완충용액(pH=7.10)에서 0.17 V이며, 전기촉매반응에서 속도상수($K_{ch}{Gamma}$)는 $2.58{ imes}10^5cms^{-1}$로서 수식되기 전보다 2.41배 큰 값이다. EQCM법에 의한 산화-환원과정에서 질량변화는 수식되기 전보다 $3.28{ imes}10^3$$gmol^{-1}$ 더 크다.

Keywords

References

  1. Phys. Rev. B. v.29 no.7 B.R. Weinberger;J. Kaufer;A.J. Heeger;A. Pron;A.G. MacDiamid
  2. J. Chem. Phys. v.60 no.5098 H. Shirakawa;E.J. Louis;A.G. MacDiamid;C.K. Ching;Y. Park;A.J. Heeger
  3. Polymer(Korea) v.23 no.4 Y.H. Lee;W.S. Shim;D.S. Lee
  4. Polymer Sci. v.35 no.165 S.K. Cha
  5. Polymer(Korea) v.21 no.5 D.K. Lee;K.M. Lim;K.H. Cha;H.W. Lee;J.H. Kim
  6. J. Am. Chem. Soc. v.102 no.5728 C. Degrand;L.L. Miller
  7. J. Am. Chem. Soc. v.103 no.1 H.D. Abruna;P. Denisevich;M. Umana;T.J. Meyer;R.W. Murray
  8. J. Am. Chem. Soc. v.104 no.5375 H.S. White;G.P. Kittlesen;M.S. Wrighton
  9. Sol. State Comm. v.29 no.7 Y.W. Park;A. Denenstein;C.K. Chiang;A.J. Heeger;A.G. MacDiamird
  10. J. Electroanal. Chem. v.114 no.6641 P.J. Peerce;A.J. Bard
  11. Anal. Chem. v.62 no.274 S.K. Cha;H.D. Abruna
  12. J. Electroanal. Chem. v.117 no.267 C. Degrand;L.L. Miller
  13. J. Am. Chem. Soc. v.102 no.5728 C. Degrand;L.L. Miller
  14. J. Electroanal. Chem. v.117 no.283 C. Degrand;E. Laviron
  15. J. Electrochem. Soc. v.127 no.654 W.J. Albery;M.J. Eddowes;K.J. Hall;A.R. Hillman
  16. J. Am. Chem. Soc. v.102 no.5123 D.C. Bookbinder;M.S. Wrighton
  17. Anal. Chem. v.69 no.4065 F. Pariente;F. Tobalina;G. Moreno;L. Hemandez;E. Lonzo;H.D. Abruna
  18. Electrochemistry C.W. Davies
  19. Anal. Chem. v.66 no.4337 P. Pariente;E. Lorenzo;H.D. Abruna
  20. Biosensors and Their Applications V.C. Yang;T.T. Ngo
  21. J. Am. Chem. Soc. v.98 no.5500 G.R. Rowe;S.E. Creager
  22. Electroanalytical Chemistry v.19 no.109 A.J. Bard;I. Rubinstein
  23. Electroanalytical Che-mistry v.13 no.191 Physicochemical Hydrodynamics V.G. Levich;A.J. Bard
  24. Handbook of Conductng Polymer v.1 T.A. Skotheim