화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites

  • 박수진 (한국화학연구소 화학소재연구부) ;
  • 장유신 (한국화학연구소 화학소재연구부) ;
  • 이재락 (한국화학연구소 화학소재연구부)
  • 발행 : 2001.03.01

초록

복합재료의 기계적 계면 특성을 향상시키기 위하여 탄소섬유에 무전해 니켈도금 표면처리를 하였으며, 표면처리된 PAN계 탄소섬유를 에폭시수지에 함침시켜 프리프레그법으로 일방향 탄소섬유/에폭시수지 복합재료를 제조하였다. 본 연구에서는 무전해 니켈도금으로 유기된 취성-연성 전이 특성을 가지는 Ni-P 합금의 양에 따른 복합재료의 층간전단강도(ILSS)와 충격강도의 차이를 조사하였다. 또한, 탄소섬유 표면 특성의 변화를 X-ray photoelectron spectroscopy (XPS)로 측정하였다. 그 결과, 무전해 니켈도금된 탄소섬유 표면의 $O_{ls}$ /$C_{ls}$ 비 또는 니켈 (Ni)과 인 (P)이 증가되었으나 ILSS의 향상에는 큰 영향을 미치지 못하는 것을 알 수 있었다. 그러나, 무전해 니켈도금으로 탄소섬유 표면에 도입된 Ni-P 합금은 복합재료의 연성에 따른 충격강도를 향상시키는 것을 확인할 수 있었다.

The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

키워드

참고문헌

  1. ASM International v.1 Engineered Materials Handbook W. S. Smith
  2. Carbon Fibers(2nd. ed.) J. B. Donnet;R. C. Bansal
  3. Polymer(Korea) v.22 S. J. Park;M. S. Cho;J. R. Lee
  4. J. Colloid Interface Sci. v.206 S. J. Park;J. B. Donnet
  5. J. Mater. Sci. v.33 S. J. Park;J. R. Lee
  6. Interfacial Forces and Fields : Theory and Applications S. J. Park;J.P. Hsu(ed)
  7. Surface and Interface Anal. v.25 L. Weitzsacker;X. Ming;L. T. Drzal
  8. J. Appl. Polym. Sci. v.61 L. Ibrra;A. Macias;E. Palma
  9. J. Chim. Phys. v.59 S. J. Park;E. Papirer;J. B. Donnet
  10. J. Nuclear Sci. Technol. v.32 N. Tetsuji;S. Hiroshi;A. Fujio;O. Masatoshi
  11. Ceram. Bull. v.54 R. V. Crane;V. J. Krukonis
  12. Electroless Plating: Fundamentals and Applications K. Parker;R. Woil
  13. Polymer(Korea) v.24 S. J. Park;Y. S. Jang;J. R. Lee;J. S. Kim
  14. Chem. Mater v.11 L. M. Ang;T. S. Andy;G. Q. Xu;C. H. Tung;S. Zhao;J. L. S. Wang
  15. Polymeric Materials and Processing J. M. Charrier
  16. J. Appl. Electrochem. v.26 K. P. Han;J. L. Fang
  17. J. Adhesion Sci. Technol. v.11 E. Hage Jr.;S. F. Costa;L. A. Pessan
  18. J. Colloid Interface Sci. v.170 N. Dilsiz;E. Ebert;W. Weisweiler;G. Akovali
  19. Carbon v.34 C. Ahearn;F. Marino