Cure Behaviors of Epoxy Resin Initiated by Methylanilinium Salts as Latent Cationic Curing Agent

잠재성 양이온 경화제인 Methylanilinium염에 의해 개시된 에폭시 수지의 경화 거동

  • 박수진 (한국화학연구소 화학소재연구부) ;
  • 김택진 (한국화학연구소 화학소재연구부) ;
  • 이창진 (한국화학연구소 화학소재연구부) ;
  • 이재락 (한국화학연구소 화학소재연구부) ;
  • 박정규 (서울대학교 화학과)
  • Published : 2001.03.01

Abstract

The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluoroantimonate (CMH) curing agent as a thermal latent initiator on thermal behaviors, rheological properties, and thermal stability of diglycidylether of bisphenol A (DGEBA) epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic at a given temperature. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator, due to high activity of CMH. Rheological properties of the system were investigated under isothermal condition using a rheometer The gelation time was obtained from the analysis of storage modulus (G'), loss modulus (G"), and damping factor (tan $\delta$). As a result, the reduction of gelation time was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization, due to difference of activity. The thermal stability of the cured epoxy resin was discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

새로운 열잠재성 개시제로서 N-crotyl-N,N-dimethyl-4-methylanilinium hexafluoroan-timonate (CMH) 촉매가 diglycidylether of bisphenol A (DGEBA) 에폭시 양이온 중합계의 열적, 유변학적 특성 및 열정성에 미치는 영향에 대해 연구하였다. DSC에 의한 DGEBA/CMH 경화계의 열분석 결과, 본 경화계는 일정 온도까지 우수한 잠재성을 지닌 반응 기구임을 확인할 수 있었으며, 특히 개시제의 함량이 증가할수록 CMH의 높은 활성에 의해 DGEBA의 전환율 및 경화반응 속도가 증가하였다. 유변학적 특성은 레오미터를 사용하여 등온 조건 하, 저장 탄성율(G'), 손실 탄성율(G") 그리고 damping factor (tan $\delta$)를 구한 후 이들 데이터로부터 겔화 시간을 측정하였다. 실험 결과 경화 온도 및 CMH의 증가에 따른 활성의 차이로 인하여 에폭시 양이온 중합의 네트워크 구조 형성에 영향을 미쳐 겔화 시간이 단축됨을 알 수 있었다. 형성된 네트워크 구조의 열안정성은 TGA 분석을 통해 분해 활성화 에너지 및 열안정성 인자 등의 측정으로 고찰하였다.찰하였다.

Keywords

References

  1. Advances in Chemistry Series 114 Epoxy Resin Chemistry R. S. Bauer
  2. Epoxy Resin C. A. May
  3. The Epoxy Resin Formulators Training Manual R. L. Wheeler
  4. J. Appl. Polym.Sci v.30 J. Gu;S. C. Narang;E. M. Pearce
  5. Polym. J. v.29 Y. C. Kim;S. J. Park;J. R. Lee
  6. J. Polym. Sci. Polym. Chem. Ed v.18 J. V. Crivello;J. H. W. Lam
  7. J.Polym. Sci. Polym. Chem. v.29 F. Hamazu;S. A. Kashi;T. Koizumi;T. Takata;T. Endo
  8. Polymer(Korea) v.23 S. J. Park;M. S. Cho;J. R. Lee
  9. Eur. Polym. J v.28 I.I. Abu-Abodoum;A. Ali
  10. Macromolecules v.17 D. C. Neckers;I. I. Abu-Abdoum
  11. J. Appl. Polym. Sci. v.32 K. Morio;H. Murase;H. Tsuchiya
  12. Chem. Lett v.17 S. B. Lee;Y. S. Park;K. W. Lee;T. Endo
  13. J. Polym. Sci., Polym. Phys. v.38 S. J. Park;T. J. Kim;J. R. Lee
  14. J. Polym. Sci. Polym. Chem v.38 S. J. Park;M. K. Seo;J. R. Lee
  15. Bull. Korean. Chem. Soc. v.21 J. H. Shin;J. Park;Y. Lee;C. Lee
  16. Macromol. Symp. v.107 T. Endo;F. Sanda
  17. Encyclopedia of Polymer Science and Engineering(2nd Ed.) H. F. Mark;N. M. Bikales;C. H. Overberger;G. Mengens
  18. Adv. Polym. Sci. v.37 S. Penczek;P. Kubisa;K. Matyjaszewski
  19. Polym. Compo v.18 J. A. McGowen;L.J. Mathias
  20. Anal. Chem. v.60 D. N. Waters;L. P. John
  21. J. Appl. Polym. Sci. v.61 Y. L. Liu;G. H. Hsiue;Y. S. Chiu;R. J. Jeng
  22. J. Appl. Polym. Sci. v.27 C. M. Tung;P. J. Dynes
  23. J. Appl. Polym. Sci. v.47 P. A. Oyanguren;R. J. Williams
  24. Macromol. Chem. Macromol. Symp. v.3 S. Penczek;P. Kubisa;R. Szymanski
  25. J. Appl. Polym. Sci. v.17 P. G. Babayevsky;J. K. Gillham
  26. J. Coatings Tech. v.53 S. P. Pappas;L. W. Hill
  27. J. Polym. Sci. v.3 L. H. Lee
  28. Anal. Chem v.35 H. H. Horowitz;G. Metzger
  29. Anal. Chem v.33 C. D. Doyle