Morphology of Membranes Formed from Polysulfone/Polyethersulfone/N-methyl-2-pyrrolidone/Water System by Immersion Precipitation

  • Baik, Ki-Jun (Mobile Electronic Commerce Corp, Commencement of an Enterprise Center, Busan Information and Technology College) ;
  • Kim, Je-Young (Battery Research Institute, LG Chem Research Park) ;
  • Lee, Jae-Sung (Center for Advanced Functional Polymers, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sung-Chul (Center for Advanced Functional Polymers, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hwan-Kwang (Department of Industrial Chemistry, Chungwoon University)
  • Published : 2001.10.01

Abstract

The polysulfone(PSf)/polyethersulfone(PES) blend membranes were prepared by an immersion precipitation method. N-methyl-2-pyrrolidone(NMP) was used as a solvent and water as a nonsolvent. The composition of the coagulation bath and the dope polymer concentration as well as the blend ratio of two polymers were varied. The membrane morphologies were interpreted on the basis of the phase diagram of the PSf/PES/NMP/water system. As the solvent content in the coagulation bath increased in the single polymer system, the number of macrovoids decreased and the morphology was changed from finger-like to cellular structure. In the given bath condition phase separation occurs earlier for the solutions of PSf/PES blend than for those of single polymer. A horizontally layered structure and horizontal protuberances inside the macrovoid were observed for the membranes formed from PSf/PES blend solutions. This peculiar structure formation can be interpreted by a PSf-rich/PES-rich phase separation followed by a polymer-rich/polymer-lean phase separation during the exchange of solvent and nonsolvent.

Keywords

References

  1. J. Appl. Polym. Sci. v.74 no.2113 K. J. Baik;J. Y. Kim;H. K. Lee;S. C. Kim
  2. Ind. Eng. Chem. Prod. Res. Dev. v.22 no.320 T. A. Tweddle;O. Kutowy;W. L. Thayer;S. Sourirajan
  3. Br. Polym. J. v.20 no.317 B. T. Swinyard;J. A. Barrie
  4. Eur. Polym. J. v.5 no.319 G. Allen;J. McAinsh;C. Strazielle
  5. Eur. Polym. J. v.6 no.1635 G. Allen;J. McAinsh
  6. Eur. Polym. J. v.6 no.1635 E. Staude;L. Breibach
  7. Polymer(Korea) v.21 no.241 H. K. Lee;K. Levon
  8. Korean J. Chem. Eng. v.17 no.564 J. Y. Kim;H. K. Lee;S. C. Kim
  9. J. Appl. Polym. Sci. v.30 no.2805 M. H. V. Mulder;J. O. Hendrikman;J. G. Wijmans;C. A. Smolders
  10. Desalination v.80 no.167 S. Doi;K. Hamanaka
  11. J. Membrane Sci. v.65 no.231 P. Radovanovic;S. W. Thiel;S. T. Hwang
  12. Ind. Eng. Chem. Res. v.29 no.2028 I. Pinnau;J. Wind;K-V. Peinemann
  13. Sep. Sci. Tech. v.27 no.161 T. Liu;D. Zhang;S. Xu;S. Sourirajan
  14. J. Membrane Sci v.81 no.71 S. C. Pesek;W. J. Koros
  15. J. Membrane Sci. v.71 no.81 I. Pinnau;W. J. Koros
  16. J. Appl. Polym. Sci. v.48 no.2161 P.H. Pfromm.;I. Pinnau;W. J. Koros
  17. J. Appl. Polym. Sci. v.43 no.1491 I. Pinnau;W. J. Koros
  18. Polym. Sci. v.36 no.4711 M. J. Han;P. M. Bummer;M. Jay;D. Bhattacharyya
  19. J. Membrane. Sci v.70 no.17 J. A. vant Hof;A. J. Reuvers;R. M. Boom;H. H. M. Rolevink;C. A. Smolders
  20. J. Membrane Sci. v.73 no.277 R. M. Boom;I. M. Wienk;Th. van den Boomgaard;C. A. Smolders
  21. J. Membrane Sci. v.78 no.123 C. M. Tam;M. Dal-Cin;M. D. Guiver
  22. J. Membrane. Sci. v.110 no.239 G. C. Kapantaidakis;S. P. Kaldis;X. S. Dabou;G. P. Sakellaropoulos
  23. Polym. Adv. Tech. v.8 no.712 Q. Wang;X. Chen;J. Zhang;Y. Pei
  24. J. Membrane Sci. v.73 no.259 C. A. Smolders;A. J. Reuvers;R. M. Boom;I. M. Wienk
  25. J. Membrane Sci. v.112 no.29 S. A. Mckelvey;W. J. Koros
  26. J. Appl. Polym. Sci. v.74 no.2124 Y. D. Kim;H. K. Lee;K. J. Baik;S. C. Kim
  27. J. Appl. Polym. Sci. v.65 no.2643 J. YH. Kim;H. K. Lee;K. J. Baik;S. C. Kim