Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik (Division of Ceramic & Chemical Engineering, Myongji University) ;
  • Park, Kyung-Ran (Division of Ceramic & Chemical Engineering, Myongji University) ;
  • Wu, Jong-Pyo (Division of Ceramic & Chemical Engineering, Myongji University) ;
  • Han, Chang-Sun (Styrenic Resin R&D Center, LG Chemical Ltd.) ;
  • Lee, Chan-Hong (Styrenic Resin R&D Center, LG Chemical Ltd.)
  • Published : 2001.04.01

Abstract

Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

Keywords

References

  1. Polymer Latexes Preparation, Characterization, and Applications Control of Core-Shell Latex Morphology S. Lee;A. Rudin;E. S. Daniels(ed.);E. D. Sudol(ed.);M. S. El-Aasser(ed.)
  2. Am. Chem. Soc., Div. Org. Coat. Plast. Chem., Pap. v.43 D. I. Lee
  3. J. Polym. Sci., Polym. Chem. Ed. v.21 T. I. Min;A. Klein;M. S. El-Aasser;J. W. Vanderhoff
  4. J. Appl. Polym. Sci. v.30 I. Cho;K. W. Lee
  5. J. Polym. Sci., Polym. Chem. Ed. v.22 S. Muroi;H. Hashimoto;K. Hosoi
  6. J. Polym. Sci., Polym. Chem. Ed. v.21 D. I. Lee;T. Ishikawa
  7. Int. Engr. Chem. Prod. Res. Dev. v.24 D. R. Stuteman;A. Klein;M. S. El-Aasser;J. W. Vanderhoff
  8. J. Polym. Sci., Polym. Lett. Ed. v.18 M. Okubo;Y. Katsuta;T. Matsumoto
  9. J. Polym. Sci., Polym. Chem. Ed. v.16 M. Okubo;A. Yamada;T. Matsumoto
  10. J. Polym. Sci., Polym. Lett. Ed. v.20 M. Okubo;Y. Katusta;T. Matsumoto
  11. Langmuir v.11 F. Sommer;T. M. Duc;R. Pirri;G. Meunier;C. Quet
  12. Polym. Eng. & Sci. v.31 C. Wrotecki;P. Heim;P. Gaillard
  13. Polym. Intern. v.41 F. Vazquez;M. Schneider;T. Pith;M. Lambla
  14. J. Appl. Polym. Sci. v.56 G. Canche-Escamilla;E. Mendizabal;M. J. Hernandez-Patino;S. M. Arce-Romero;V. M. gonzalez-Romero
  15. Emulsion Polymers and Emulsion Polymerization no.165 Nonuniform Emalsion Polymers D. R. Bassett;K. L. Hoy;D. R. Bassett(ed.);A. E. Hamielec(ed.)
  16. U. S. Patent 5,618,888
  17. Emulsion Polymerization and Emulsion Polymers The Formation and Properties of Latex Films M. A. Winnick;P. A. Lovell(ed.);M. S. El-Aasser(ed.)
  18. J. Mater. Sci. v.19 C. B. Bucknall;J. K. Partridge;M. V. Ward
  19. J. Mater. Sci. v.23 N. Shah
  20. Polymer v.38 K. W. Cho;J. H. Yang;C. E. Park
  21. Polymer v.39 K. W. Cho;J. H. Yang;C. E. Park
  22. Rheological Acta v.29 J. F. Palierne
  23. J. Rheology v.36 H. Gramspacher;J. Meissner