Formation and Growth of Hydride Blisters in Zr-2.5Nb Pressure Tubes

  • Published : 2001.04.01

Abstract

Hydride blisters were formed on the outer surface of Zr-2.5Nb pressure tube by a non- uniform steady thermal diffusion process. A thermal gradient was applied to the pressure tube with a heat bath kept at a temperature of 415$^{\circ}C$ and an aluminum cold finger cooled with flowing water of 15$^{\circ}C$. Optical microscopy and tree-dimensional laser profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion time. Hydride blisters were expected to start at a hydrogen concentration of 30 - 70 ppm and a thermal diffusion time of 4 - 6$\times$10$^{5}$ sec. The hydride blister size increases with higher hydrogen concentrations and longer thermal diffusion time . Some of the samples revealed cracks on the hydride blisters. The ratio of hydride blister depth to height was estimated as approximately 8: 1.

Keywords

References

  1. G. J. Field, J. T. Dunn and B. A. Cheadle, 'Analysis of the pressure tube failure at Pickering NGS 'A' Unit 2 nuclear systems department,' Can. Met. Quartely, 24, 181 (1985)
  2. M. Legar and et al., 'Growth, fracture, and nondestructive evaluation of hydride blisters in Zr-2.5Nb pressure tubes', 8th symp. on 'Zirconium in the Nuclear Industry', ASTM STP 1023, L F. P. Varf Swam and C. M. Eucken, Eds., ASTM pp.50-65(1989)
  3. M. Jovanovic and et al., 'Thermal diffusion oh hydrogen and hydride precipitation in Zr-Nb pressure tube alloys,' Can. Met. Quartely, 27, 323 (1988)
  4. A. Sawatzky, 'Formation of hybride blisters in zirconium alloy pressure tubes,' Can. met. Quartely, 24, 227 (1985)
  5. A. J. White, A. Sawatzky and C. H. Woo, 'A computer model for hybride blister growth in zirconium alloys,' AECL Report AECL-8356 (1985)
  6. G. Domizzi and et al., 'Blister growth in zirconium alloys: experimentation and modeling,' J. Nucl. Mater. 229, 36 (1996) https://doi.org/10.1016/0022-3115(95)00204-9
  7. G. Domozzi and et al., 'Hydride distribution around a blister in Zr-2.5Nb pressure tubes,' J. Nucl. Mater., 275, 255 (1999) https://doi.org/10.1016/S0022-3115(99)00130-0
  8. M. Legar and et al., 'Understanding hybride blisters in pressure tubes', Ontario Hydro Research Rev., 8, 46 (1993)
  9. Y. S. Kim and et al., 'Procedures for characterization of Zr-25Nb pressure tubes', KAERI/TR-1329/99, Korea Atomic Energy Research Institute (1999)
  10. J. J. Kearns, 'Thermal solubility and partitioning of hydrogen in the alpha phase of zirconium, sircaloy-2 and zircaloy-4', J. Nucl. Mater., 22, 292 (1967) https://doi.org/10.1016/0022-3115(67)90047-5
  11. D. O. Northwood and U. Kosasih, 'Hydrides and delayed hydrogen cracking in zirconium and its alloys', Int. Matals Rev., 28, 92 (1983)
  12. J. H. Root and R. W. L. Fong, 'Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5Nb pressure tube material, J. Nucl. Mater., 232, 75 (1996) https://doi.org/10.1016/0022-3115(96)00379-0
  13. M. P. Plus, 'Determination of fracture initiation in hybride blisters using acoustic emission', Met. Trans.A, 19A, 2247 (1988) https://doi.org/10.1007/BF02645048
  14. M. L. Vanderglas and Y. J. Kim, 'Stresses due to volumetric expansion of zirconium hydride inclusions,' Int. J. Pres. Ves. & Pipng 22, 177 (1986) https://doi.org/10.1016/0308-0161(86)90116-X
  15. D. V. Leemans and et al., 'Probabilistic techniques for the assessment of pressure tube hybride blistering in CANDU reactor', Int. J. Pres. Ves. & Pipng, 56, 37 (1993) https://doi.org/10.1016/0308-0161(93)90116-B
  16. K. N. Choo, S. C. Kwon, and Y. S. Kim, 'Hydrogen absorption behavior of Zr-2.5Nb pressure tubes in Wolsong Unit 1', J. Korean Nucl. Soc., 30(4) 318 (1998)
  17. Y. S. Kim and H. D. Chung, 'Integrity evaluation report for pressure tubes of Wolsong Unit 1', KAERI Technical Report, KAERI/TR-414/94, Korea Atomic Energy Research institute (1993)