Structural and electrical properties of ZnO:In films deposited on glass substrates by a spray Pyrolysis method

분무열분해법에 의한 ZnO:In 박막의 구조와 전기적 특성

  • 서동주 (조선대학교 과학교육학부(물리전공)) ;
  • 박선흠 (여수공업대학)
  • Published : 2001.07.01

Abstract

ZnO and ZnO:In films were deposited on the glass substrates by a spray pyrolysis method. It is found that ZnO films were polycrystalline with the preferred orientation (002) and have a hexagonal structure with lattice constants of a=3.242 $\AA$ and c=5.237 $\AA$. The crystalline structure of ZnO:In films deposited at the In content of 0~6.03 at. % were the same as that of ZnO films, but its lattice constants was slightly larger than those of ZnO films. The relative atomic ratios of metal ion of ZnO:In films were in accordance with those of the spray solution within the experimental error. The minimum resistivity of and the maximum carrier concentration of 19.1 $\Omega\cdot\textrm{cm}$ and the maximum carrier concentration of $2.11\times10^{19}\textrm{cm}^{-3]$ obtained from the ZnO:In films when In content was 2.76 at. %. The optical transmission of the sample grown at the In content of 3.93 at. % was about 95% in the wavelength between 400 and 800 nm.

분무열분해법으로 유리기판 위에 ZnO와 ZnO:In 박막을 성장시켰다. 성장된 ZnO 박막은 hexagonal 구조를 이루고, 격자상수 a=3.242 $\AA$, c=5.237 $\AA$였고, (002) 방향으로 선택 성장되었다. In을 0~6.03 at. % 불순물로 첨가하여 성장시킨 ZnO:In박막은 ZnO 박막의 결정구조와 같고 격자상수가 약간 증가하였다. ZnO:In 박막의 금속 이온의 비는 분무용액의 금속 이온의 비와 거의 일치하였다. ZnO:In 박막의 최소 비저항과 최대 운반자 농도는 In를 2.76 at % 불순물로 첨가하여 성장시킨 경우였는데, 그 값은 각각 19.1 $\Omega\cdot\textrm{cm}$, $2.11\times10^{19}\textrm{cm}^{-3]$이었다. In를 3.93 at. % 불순물로 첨가하여 성장시킨 ZnO:In 박막 경우 400~800 nm 영역에서의 광투과율은 95% 이상이었다.

Keywords

References

  1. Mater. Res. Soc. Symp. Proc. v.345 H. P. Paruska;T. Parodos;N. M. Kalkhoraud;W. D. Halverson
  2. J. Lumin. v.60&61 T. Myata;T. Minami;K. Saikai;S. Takata
  3. OP-DET v.9 T. Toyama;M. Yoshimi;T. Ishiko;T. Tachi;K. Hiratsuka;H. Okamoto;Y. Hamakawa
  4. J. Appl. Phys. v.67 Y. Matsmuto;G. A. Hirata;H. Takakura;H. Okamoto;Y. Hamakawa
  5. Thin Solid Films v.102 J. L. Chopra;S.Mayjor;D. K. Pandya
  6. Electro-ceramics A. J. Moulson;J. M. Hobert
  7. J. Phy. Chem v.89 B. Li;S. R. Morrison
  8. Thin Solid films v.193/194 B. H. Choi;H. B. Im;J. S. Song;K. H. Yoon
  9. J. Appl. Phys. v.72 J. Hu;R. G. Gordon
  10. J. Vac. Sci. Technol. A v.14 no.3 G. A. Hirata;J. Mckittrick;J. Siqueiros;O. A. Lopez;T. Cheek;O. Contreras;J. Y. Yi
  11. Sol. Energy Mater. v.17 S. Major;K. L. Chopra
  12. Jpn. J. Appl. Phys. v.23 T. Minami;H. Nato;S. Takata
  13. J. Phys. D: Appl. Phys. v.27 P. Pushparajah;A. K. Arof;S. Radhakrisna
  14. Element of X-ray Diffraction(2nd Edition) B. D. Cullity
  15. J. Crystal Growth v.159 S. Oktik;G. J. Russell;A. W. Brinkman
  16. Appl. Sur. Sci. v.92 C. H. Lee;L. Y. Lin