References
- W. E. Polakowski, D. A. Cournoyer, S. K. Rogers, M. P. DeSimio, D..W. Ruck, J. W. Hoffmeister, and R. A. Raines, ComputerAided Breast Cancer Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative-Based Feature Saliency, IEEE Trans. on Med Imaging, vol. 16, No.5, pp. 811-819, Dec.l997 https://doi.org/10.1109/42.650877
- G. M. Brake, N. Karssemeijer, Single and Multiscale Detection of Masses in Digital Mammograms, IEEE Trans on Med Imaging, vol.18, No.7 pp. 628-639, Jul.1999 https://doi.org/10.1109/42.790462
- N. Petrick, H. P. Chan, B.Sahiner and D. Wei, An Adaptive Density-Weighted Contrast Enhancement Filter for Mammographic Breast Mass Detection, IEEE Trans on Med Imaging, vol.15, No.1, pp. 59-67, Feb. 1996 https://doi.org/10.1109/42.481441
- N. Petrick, H. P. Chan, B. Sahiner and M. A. Helvie, Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms, Med.Phys, vol.26, No.8, pp.1642-1654, Aug. 1999 https://doi.org/10.1118/1.598658
- H. Kobatake, M. Murakami, H. Takeo and S. Nawano, Computerized Detection of Malignant Tumors on Digital Mammograms, IEEE Trans on Med Imaging, vol.18, No.5, pp. 369-378, May. 1997 https://doi.org/10.1109/42.774164
- M. A. Kupinski and M. L. Giger, Automated Seeded Lesion Segmentation on Digital Mammograms, IEEE Trans on Med Imaging, vol.17, No.4, pp. 510-517, Aug.l998 https://doi.org/10.1109/42.730396
- A. J. Mndez, P. G. Tahoces, M. J. Lado, M. Souto and J. J. Vidal, Computer-aided diagnosis : Automatic detection of malignant masses in digitized mammograms, Med.Phys, vol.25, No.6, pp.957-964, Jun.l998 https://doi.org/10.1118/1.598274
- D. Wei, H..P. Chan, N. Petrick, B. Sahiner, M. A. Helvie, D. D. Adler and M. M. Goodsitt, False-positive reduction technique for detection of masses on digital mammograms : Global and local multiresolution texture analysis, Med.Phys, vol.24, No.6, pp.903-914, Jun.1997 https://doi.org/10.1118/1.598011
- H. P Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt and.N. Petrick, Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space, Phys.Med.Biol, vol.40, No.5, pp.857-876, 1995 https://doi.org/10.1088/0031-9155/40/5/010
- J. K. Kim, J. M. Park, K. S. Song and H. W. Park, Adaptive Mammographic Image Enhancement Using First Derivative and Local Statistics, IEEE, Trans on Med Imaging, vol.16, No.5 pp, 495-502, Oct.l997 https://doi.org/10.1109/42.640739
- B. Sahiner, H. P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler and M. M. Goodsitt, Classification of Mass and Normal Breast Tissue: A Convolution Neural Network Classifier with Spatial Domain and Texture Images, IEEE Trans on Med Imaging, vol.15, No.5, pp. 598-610, Oct.1996 https://doi.org/10.1109/42.538937
- L. M. Bruce and R. R. Adhami, Classifying Mammographic Mass Shapes Using the Wavelet Transform Modulus-Maxima Method, IEEE Trans on Med Imaging, vol.18, No.12, pp.1170-1177, Dec. 1999 https://doi.org/10.1109/42.819326
- L. Li, W. Qian and L. P. Clarke, Digital Mammography: Computer-assisted Diagnosis Method for Mass Detection with Multi-orientation and Multiresolution Wavelet Transforms, Acad Radiol, vol.4, No.11, pp. 724-731, Nov.1997 https://doi.org/10.1016/S1076-6332(97)80075-X
- R. M. Rangayyan, N. M. El-Faramawy, J. E. Leo Desautels and O. A. Alim, Measures of Acutance and Shape for Classification of Breast Tumors, IEEE Trans on Med Imaging, vol.16, No.6, pp. 799-810, Dec. 1997 https://doi.org/10.1109/42.650876
- B. Sahiner, H. P. Chan, D. Wei, N. Petrick, M. A. Helvie, D. D. Adler and M. M. Goodsitt, Image feature selection by a genetic algorithm : Application to classification of mass and normal breast tissue, Med.Phys, vol.23, No.10, pp.1671-1684, Act.l996 https://doi.org/10.1118/1.597829
- H. P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, D. D. Adler, C. Paramagul, J. S. Newman and S. Sanjay-Gopal, Improvement of Radiologists Characterization of Mammographic Masses by Using Computer-aided Diagnosis : An ROC Study,' Radiology, vol.212, No.3, pp.817-827, Sep.l999
- B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie and M. M. Goodsitt, Computerized characterization of masses on mammograms : The rubber band straightening transform and texture analysis, Med.Phys, vol.25, No.4, pp. 516-526, Apr.1998 https://doi.org/10.1118/1.598228
- H. Kobatake and Y. Yoshinaga, Detection of Spicules on Mammogram Based on Skeleton Analysis, IEEE Trans on Med Imaging, vol.15, No.3 pp, 235-245, Jun.l996 https://doi.org/10.1109/42.500062
- C. J. Vyborny, T. Doi, K. F. O'Shaughnessy, H. M. Romsdahl, A. C. Schneider and A. A. Stein, 'Breast Cancer:Importance of Spiculation in Computer-aided Detection', Radiology, vol.215, No.3, pp.703-707, Jun.2000
- 한국중앙암등록본부, 한국중앙암 등록 사업연례보고서 1997.1-1997.12. 보건복지부, 1999
- Y.O. Ahn, B. J. Park, K. Y. Yoo, et al. 'Incidence estimation of female breast cancer among Koreans, J Korean Med Sci. vol. 9, pp. 328-333, 1994
- C. L. Kosany, LAG Ries, B. A. Miller, A. Harras, B. K. Edwards(eds), SEER Cancer Statistics Review, 1973-1992, Tables and Graphs, National Cancer Ins., NIH pub. No. 95-2789, Bethesdaaa, MD,1995
- L. H. Barker, Breast cancer detection demonstration project : Fiveyear summary report, CA Cancer J Clin, vol. 32, No.4, pp. 194-225, 1994
- 오기근, 이경식, 정우희, 병합방사선 진단방법을 이용한 한국인 여성 유방암의 연구, 대한방사선의학회지, vol. 22, pp. 743-760, 1986
- A. P. Pentland, 'Fractal-Based Description of Natural Scenes', IEEE Trans. Pattern Anal. Machine Intell. Vol. PAMI-6, No.6, Nov. 1984
- W. E. Higgins and E. J. Ojard, Interactive Morphological Watershed Analysis for 3D Medical Images, Computerized Medical Imaging and Graphics, vol. 17, pp387-395, 1993 https://doi.org/10.1016/0895-6111(93)90033-J
- American College of Radiology, Illustrated Breast Imaging Reporting and Data system (BI-RADSTM), 3rd ed. Reston(VA), American College of Radiology, 1998
- J. R. Parker, Algorithms for Image Processing and Computer Vision, John Wiley & Sons, Inc. 1997