Edge Detection Using a Water Flow Model

Water Flow Model을 이용한 에지 검출

  • 이건일 (서강대학교 전자공학과) ;
  • 김인권 (서강대학교 전자공학과) ;
  • 정동욱 (서강대학교 전자공학과) ;
  • 송정희 (서강대학교 영상대학원 Media 공학과) ;
  • 곽원기 (서강대학교 전자공학과) ;
  • 박래홍 (서강대학교 전자공학과)
  • Published : 2001.07.01

Abstract

In this paper, we propose a flew edge detection method based on water flow model, in which gradient image surface is considered as a 3-dimensional (3-D) geographical feature. The edges of the objects in the background can be detected by the large gradient magnitude areas and to make the edges immersed it is required to invert the gradient image. The proposed edge detector uses a water flow model based enhancement and locally adaptive thresholding technique applied to the inverted gradient image resulting in better noise performance. Computer simulations with a few synthetic and real images show that the Proposed method can extract edge contour effectively.

본 논문에서는 영상의 그래디언트 (gradient)를 구하여 그래디언트 값의 분포를 마치 3차원 지형과 같은 개념으로 간주하고 여기에 물이 흐르는 개념을 적용한 에지 (edge) 검출 방법을 제안하였다 영상에서 그래디언트 값이 큰 부분은 배경과 객체간의 에지라 볼 수 있으며, 이 에지에 물이 고이게 하기 위해서는 반전된 그래디언트 영상을 사용한다. 반전된 그래디언트 영상에서 물의 흐름을 기반으로 한 enhancing 작업과 국부적응 임계값 적용을 실시하여 잡음을 줄인 에지 영상을 찾는 방법을 제안한다. 합성영상과 실제영상에 대한실험을 통해 제안한 방법의 효율성을 검증하였다.

Keywords

References

  1. J. R. Parker, Algorithms for Image Processing and Computer Vision, Wiley, New York, 1997
  2. R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, McGraw-Hill, New York, 1995
  3. S. Mallat and S. Zhong, 'Characterization of signals from multiscale edges,' IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-14, no. 7, pp. 710-732, July. 1992 https://doi.org/10.1109/34.142909
  4. S. Mallat, 'Wavelets for a vision,' Proc. IEEE, vol. 84, no. 4, pp. 604-614, Apr. 1996 https://doi.org/10.1109/5.488702
  5. Y. Y. Tang, L. Yang, and J. Liu, ' Characterization of dirac-structure edges with wavelet transform,' IEEE Trans. Systems, Man, Cybernetics, vol. SMC-30, no. 1, p. 93-109, Feb. 2000 https://doi.org/10.1109/3477.826950
  6. T. Aydm, Y. Yemez, E. Anarm, and B. Sankur, 'Multidirectional and multiscale edge detection via M-band wavelet transform,' IEEE Trans. Image Processing, vol 5, no. 9, pp. 1370-1377, Sep. 1996 https://doi.org/10.1109/83.535850
  7. L. Vincent and P. Soille, 'Watersheds in digital space: An efficient algorithm based on immersion simulations,' IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-13, no. 6, pp. 583-598, June. 1991 https://doi.org/10.1109/34.87344
  8. H.Ancin et al., 'An improved watershed algorithm for counting objects in noisy, anisotropic 3-D biological images,' in Proc. 1995 IEEE Int. Conf. Image Processing, vol. I, pp. 172-175, Washington D.C., USA, Oct. 1995 https://doi.org/10.1109/ICIP.1995.537608
  9. T. Geraud et al., 'Segmenting internal structures in 3D MR Images of the brain by Markovian relaxation on a watershed based adjacency graph,' in Proc. 1995 IEEE Int. Conf. Image Processing, vol. II, pp. 548-551, Washington D.C., USA, Oct. 1995 https://doi.org/10.1109/ICIP.1995.537693
  10. M. Baccar, L. A. Gee, R. C. Gonzalez, and A. Abidi, 'Segmentation of range images via data fusion and morphological watersheds,' Pattern Recognition, vol. 29, no. 10, pp. 1673-1687, Oct. 1996 https://doi.org/10.1016/0031-3203(96)00022-2
  11. P. T. Jackway, 'Gradient watersheds in morphological scale-space,' IEEE Trans. Image Processing, vol. IP-5, no. 6, pp. 913-921, June. 1996 https://doi.org/10.1109/83.503908
  12. L. Najaman and M. Schmitt, 'Geodesic saliency of watershed contours and hierarchical segmentation,' IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-18, no. 12, pp. 1163-1173, Dec. 1996 https://doi.org/10.1109/34.546254
  13. J. Canny, 'A computational approach to edge detection,' IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679-698, June. 1986
  14. D. Marr and E. Hildreth, 'Theory of edge detection,' Proc. Roy. Soc. London, vol. B-207, pp. 187-217 Feb. 1980
  15. 김인권, 정동욱, 송정희, 박래홍, 'Water flow model을 이용한 문서 영상의 이진화,' 전자공학회 논문지, 제 38권, SP편, 제 1호, pp. 19-32, 2001년 1월
  16. N. Otsu, 'A threshold selection method from gray-level histograms,' IEEE Trans. Systems, Man, Cybernetics, vol. SMC-9, no. 1, pp. 62-66, Jan. 1979
  17. F. W. M. Stentiford and R. G. Mortimer, 'Some new heuristics for thinning binary handprinted characters for OCR,' IEEE Trans. Sysems, Man, Cybernetics, vol. SMC-13, no. 1, pp. 81-84, Jan. 1983
  18. I. E. Abdou and W. K. Pratt, 'Quantitative design and evaluation of enhancement/thresholding edge detectors,' Proc. IEEE, vol. 67, no. 5, pp. 753-763, May. 1979