Context-free Marker Controlled Watershed Transform for Efficient Multi-object Detection and Segmentation

다중 물체의 효과적 검출과 분할을 위한 문맥자유 마커제어 분수계 변환

  • Seo, Gyeong-Seok (Dept.of Electronics Engineering, Graduate School of Kyungpook National University) ;
  • Jo, Sang-Hyeon (Dept.of Electronics Engineering, Graduate School of Kyungpook National University) ;
  • Choe, Heung-Mun (Dept.of Electronics Engineering, Graduate School of Kyungpook National University) ;
  • Park, Chang-Jun
  • 서경석 (경북대학교 전자·전기공학부) ;
  • 조상현 (경북대학교 전자·전기공학부) ;
  • 최흥문 (경북대학교 전자·전기공학부) ;
  • 박창준 (한국전자통신연구원 영상처리부)
  • Published : 2001.05.01

Abstract

A high speed context-free marker-controlled and minima imposition-free watershed transform is proposed for efficient multi-object detection and segmentation from a complex background. The context-free markers are extracted from a complex backgrounded multi-object image using a noise tolerant attention operator. These make marker-controlled watershed possible for the over-segmentation reduction without region merging. The proposed method presents a marker-constrained labeling that can speed up the segmentation of a marker-controlled watershed transform by eliminating the necessity of the minima imposition. Simulation results show that the proposed method can efficiently detects and segments multiple objects from a complex background while reducing over- segmentation and the computation time.

본 논문에서는 복잡 배경으로부터 임의의 다중물체를 효과적으로 검출함과 동시에 고속 분할할 수 있는 문맥자유 마커제어 분수계 변환 (context-free marker controlled watershed transform)을 제안하였다. 먼저 잡음에 강건한 주목 연산자 (attention operator)를 써서 복잡 배경 속의 여러 물체 별로 그 위치를 검출하여 문맥자유 마커를 추출하고, 이를 마커로 한정된 레이블링 (marker constrained labeling)을 하여 최소값 부과과정이 필요 없는 문맥자유 마커제어 분수계 변환을 제안함으로써 과분할없이 신속하게 분할할 수 있도록 하였다. 다중 물체가 포함된 복잡 영상에 적용 실험하여, 대상 물체에 대한 사전정보 없이도 과분할과 처리시간을 대폭 줄여 효과적으로 다중 물체를 검출함과 동시에 고속 분할이 가능함을 확인 할 수 있었다.

Keywords

References

  1. R. J. Liou and M. R. Azimi-Sadjadi, 'Multiple target detection and track identification using modified high order correlations,' Inter. Conf. on Neural Networks, pp. 3277-3282, Orlando, USA, June 1994 https://doi.org/10.1109/ICNN.1994.374761
  2. M. S. Scholl, 'Architecture for object identification: incorporating and optical correlator and digital processing for display and recording of optical data,' Optical Engineering, vol. 34, no.3, pp. 887-895, Mar. 1995 https://doi.org/10.1117/12.188592
  3. S. D. You, 'Preprocessing network for multiple objects,' Inter. Conf. on Neural Networks, pp. 4149-4153, Orlando, USA, June 1994 https://doi.org/10.1109/ICNN.1994.374879
  4. C. Zhou, G. L. Zhang, and J. X. Pen, 'A general evaluation method for segmentation algorithm based on experimental design methodology,' IEEE Inter. Conf. on Syst., Man and Cyber., vol. 1, pp. 258-262, 1995 https://doi.org/10.1109/ICSMC.1995.537768
  5. B. Bhanu, T. L. Jones, 'Image understanding research for automatic target recognition,' IEEE Aeros. and Elect. Syst. Magazine, vol. 8-10, pp. 15-23, Oct. 1993 https://doi.org/10.1109/62.240102
  6. S. Schupp, A. Elmoataz, R. Clouard, P. Herlin, and D. Bloyet, 'Mathematical morphology and active contours for object extraction and localization in medical image,' 1997 Sixth Inter. Conf. on Image Proc. and Its Appl., vol. 1, pp. 317-321, 1997
  7. P. Salembier and M. Pardas, 'Hierarchical morphological segmentation for image sequence coding,' IEEE Trans. on Image Proc., vol. 3, no. 5, Sep. 1994 https://doi.org/10.1109/83.334980
  8. F. Meyer and S. Beucher, 'Morphological segmentation,' J. Visual Comm. and Image Repr., vol. 1, no. 1, pp. 21-46, Sep. 1990 https://doi.org/10.1016/1047-3203(90)90014-M
  9. P. Soille, Morphological image analysis, Springer Press, 1999
  10. 조상현, 최흥문, '분수계 기반 영상 분할의 속도 개선을 위한 새로운 전처리 방법,' 대한전자공학회 논문지, vol. 37SP, no. 2, pp. 140-149, 2000sus
  11. L. Vincent, 'Morphological grayscale reconstruction in image analysis: applications and efficient algorithms,' IEEE Trans. on Image Proc., vol. 2, no, 2, pp. 176-201, April 1993 https://doi.org/10.1109/83.217222
  12. L. Vincent and P. Soille, 'Watersheds in digital spaces: An efficient algorithm based on immersion simulations,' IEEE Trans. on Pettern Anal. Machine Intell., vol. 13, no. 6, pp. 583-598, June 1991 https://doi.org/10.1109/34.87344
  13. G.P.Daniel, M.T.Sun, and C.Gu, 'Semantic video object extraction based on backward tracking of multivalued watershed,' Proc. of the 1999 ICIP, vol. 2, pp. 145-149, 1999 https://doi.org/10.1109/ICIP.1999.822872
  14. Shafarenko, M. Petrou, and J. Kittler, 'Automatic watershed segmentation of randomly textured color images,' IEEE Trans. on Image Proc., vol. 6, no. 11, pp. 1530-1543, Nov. 1997 https://doi.org/10.1109/83.641413
  15. H. S. Park and J. B. Ra, 'Efficient image segmentation preserving semantic object shape,' IEICE Tans. on Fundam, vol. E82-A, no. 6, June 1999
  16. J. Crespo, R. W. Schafer, J. Serra, C. Gratin, and F. Meyer, 'The flat zone approach: A general low-level region merging segmentation method,' Signal Proc., vol. 62, pp. 37-60, 1997 https://doi.org/10.1016/S0165-1684(97)00114-X
  17. 박창준, '물체 위치 검출을 위한 잡음에 강건한 주목 연산자,' 경북대학교 박사학위 논문, 2000년 6월
  18. D. Reisfeld, H. Wolfson, and Y. Yeshurun, 'Context-free attentional operators: The generalized symmetry transform,' IJCV, vol. 14, pp. 119-130, Jan. 1995 https://doi.org/10.1007/BF01418978
  19. P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen, 'A survey of thresholding techniques,' CVGIP, vol. 41, pp. 233-260, 1988 https://doi.org/10.1016/0734-189X(88)90022-9