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Abstract : The wear debris is fall off the moving surfaces in oil-lubricated systems and its morphology is directly related to the
damage and failure to the interacting surfaces. The morphology of the wear particles are therefore directly indicative of wear
processes occurring in tribological system. The computer image processing and artificial neural network was applied to shape
study and identify wear debris generated from the lubricated moving system. In order to describe the characteristics of various
wear particles, four representative parameter (50% volumetric diameter, aspect, roundness and reflectivity) from computer
image analysis for groups of randomly sampled wear particles, are used as inputs to the network and learned the friction
condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges
of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristics and recognized the
friction condition and materials very well by neural network. We discuss how these approach can be applied to condition
diagnosis of the oil-lubricated tribological system.
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Introduction

The wear debris is produced whenever moving surfaces in oil-
lubricated tribological systems interact. Its morphology is
directly related to the damage and failure to the interacting
surfaces. The study for analysis of wear debris morphology
can therefore provide very early recognition and diagnosis of a
fault in the lubricated moving system.

Despite the facile method of wear debris analysis by
microscopic examination and computer [1-3], it has not been
widely accepted in industry because effective use of this
method requires expert personnel conducting examination of
the wear debris, and the cost is not always effective.

Roylance and Raadnui [4] studied the automatic image
analysis of wear debris and the diagnosis of operating
condition, but he only described the range of shape parameters
of wear debris with various wear mechanism (stable wear,
severe wear, abrasive wear, etc..). This is the same as a doctor
check one’s health with blood test. And ferrography[5,6] put
into practical use also requires the experience and feeling of
expert personnel knowing well lubricated moving system, in
order to decide a fault in a operating condition from the
analysis result.

Like this, to apply the quantitative analysis of wear debris
occured in oil-lubricated tribological system to the diagnosis of
operating condition, it is necessary to establish a processing
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method of wear debris data with the relation of friction and
shape characteristics of wear debris generated in lubricated
moving system.

For this, we experimented with pin-on-disk sliding device
and attempted observation and analysis of wear debris
morphology with image processing and artificial neural
network. At first, obtained the four shape parameters (50%
volumetric diameter, aspect, roundness and reflectivity) of
wear debris processed by computer image analysis. And then
we identified wear debris on operating condition from above
the four representative shape parameters with neural network
widely used for a pattern identification in many fields, The
neural network is very effective to solve a problem.of the
nonlinear relation and is not only potential to acquire
characteristics of wear debris, but to explain the interacting of
friction.

This study was carried out to diagnose operating condition
in oil-lubricated tribological system through the identification
of wear debris morphology.

Experiments

Experiment of Lubricated Friction

Fig. 1 show the pin-on-disk type tester used for the experiment
of friction and wear that pressed a bearing steel ball on disk
specimen. the pin specimen was used 52100 steel (ball bearing
steel) with 5.0 mm in diameter and disk specimens were used
three kinds of steel with difference hardness, those were 1045
steel (plain carbon steel, 200 Hv), 304 steel (stainless steel,
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Fig. 1. Schematic diagram of pin-on-disk type tester.

Table 1. Experimental condition

Disk Load (N) Sliding distance (m)
1045 9.8, 49, 88.2 78, 156, 234
304 9.8, 49, 88.2 78, 156, 234

52100 9.8, 49, 88.2 78, 156, 234

190 Hv) and 52100 steel (bearing steel, 780 Hv). And
dimension of disk was 50 mm in diameter and 10 mm in width
and grinded exactly. Lubricant used in this study was added
stearic acid (0.1wt.%) to paraffin series base 0il(8.2cSt@40°C).

The motor was a speed control motor without a point of
contact and was joined with a reduction gear, so all sliding
speed was identically 7.23 mm/sec. contact loads was set up to
3 classes of 9.8 N, 49 N and 88.2 N as shown in Table 1. And
sliding distance was identically from O to 234 m in three kinds
of specimen, and was divided according to the early, middle
and late stage (0~78 m, 78~156 m and 156~234 m) of the
sliding distance by three hours.

In lubricated system, a oil-bath was instituted under contact
point of the specimen and oil was supplied on the contact point
through a silicon tube by the circulation pump. After oil was
well melted in oil-bath, wear debris in oil was taken out
through a membrane filter of 0.45 um (pore size), 47 mm
(diameter). The coefficient of friction in a each experimental
condition was acquired to a voltage of strain gauge.

Image Analysis of Shape Parameters

Fig. 2 show the image processing system [7] used in order to
process data information of wear debris taken from the
experiment. The optical microscope of the image processing
system equipped two kinds of halogen lamps with transmitted
and reflected light and images is saved in a frame grabber of
computer through the upper color CCD camera. The frame
grabber is 640x480 pixels and the resolvability per pixel is 8-
bit (256 gray level) in each R (red), G (green) and B (blue).

[Frame grabber|

mouse
Personal computer

Fig. 2. Schematic diagram of image processing system.
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Fig. 3. Shape parameter of wear debris.

The length of a square pixel's side is 0.426 um. As diameter of
a filter in which wear debris exist is 35 mm, the area of one
image is 1 over 17,302 in a filter. In all experimental condition,
we used an object lens of 40 magnifications and an eye lens of
10 magnifications, and calculated parameters of wear debris
more than 10 pixels in 50 filter’s random images. The frame
grabber was controlled and processed through softwares of C
language and assembler.

Fig. 3 show the four shape parameters [7] of a wear debris
are defined from data informations (particle periphery, area, the
number of particles and particle's color), and these are 50%
volumetric diameter, aspect, roundness and reflectivity.

Results and Discussion

Friction Coefficients in Operating Conditions

Fig. 4 show the friction coefficient u at ending time (9 hours)
of experiment in the oil added stearic acid, in case of the 1045
steel and 9.8 N. friction coefficient ¢ is changed during early
stage in 3 hours (0~78 m) but after that time the stable friction
is advanced without a large variation.

Fig. 5 shows the friction coefficient i in base oil and oil
added stearic acid for each 3 hours. As for experiment
conditions, specimens are 1045 steel, loads are set up 9.8 N, 49
N and 88.2 N, According as loads increase, p is reduced in
two kinds of oil.



Shape Study of Wear Debris in Oil-Lubricated System with Neural Network 67

* 05

—

C 04l Additive : Stearine acid

g ) Specimen : 1045

E 03} Load : 9.8N

5 .

8 02 W
5 o]

5

‘= 0.0 . L

w0 78 156 234

Sliding distance (m)

Fig. 4. Wave of friction coefficient.

-0.4

" Non - additive : —o— 9.8N —— 49N -o— 88.2N
= '0_3 Stearine acld: —a— ggN —a— 49N —— BE2N
2
o - E:“*“‘“E——ﬂ_;
5 B ° °
g02r
S - .
c = % o
o
_§ 0.1
e Specimen : 1045

0 L 1 H

0 78 156 234

Sliding distance (m)

Fig. 5. Effect of sliding distance on the friction coefficient.

This result can be considered that as loads increase, shear
strength of the oil molecules are increased and its direction is
easy to put about shear direction when oil are put into the
contact point of ball and disk specimens. Regardless of loads,
oil added stearic acid than base-oil have lower values of
friction coefficients. In this case, we consider that the adsorbed
film of stearic acid between two surfaces partially prevents the
direct contact because the film reduces a breakdown of the
boundary layer.

Fig. 6 show the average values of four shape parameters on
change of load in the early stage (a) 0~78 m and late stage (b)
156~234 m for 1045 steel. For the load is 9.8 N in (a), the
roundness and aspect values are very larger than that of other
two load. These describe the shape of wear debris to be very
long and complicated. As the sliding distance increase, the
reduced reflectivity value shows the processing oxidation and
the effect of an adsorbed film. Thus, from the this graph, shape
characteristics of wear debris on change of operating condition
are easily known.

Distribution of Shape Parameter Values
The operating condition in oil-lubricated system can not
decided with a shape parameter value of each wear debris.
Therefore, in order to identify obviously the shape
characteristic, the property of a small group, namely an
average parameter value of all wear debris has to be used.

Fig. 7 show the distribution of average values of four shape
parameters, (a) 50% volumetric diameter and reflectivity, (b)
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Fig. 6. Diagram of shape parameter values, Specimen: 1045
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Fig. 7. Average values of shape parameters for specimens in
every 100 wear debris, Load: 49 N, Sliding distance:
156~234 m.
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Fig. 8. Average values of shape parameters for applied load in
every 100 wear debris, Specimen: 304 steel, Sliding distance:
156~234 m.

aspect and roundness in every 100 wear debris at late stage for
three specimens. Considering the shape characteristic, the size
of wear particles in the 50% volumetric diameter of 304 steel
is larger than that of other two specimens and also the aspect
and the roundness is complex and longer. In case of
reflectivity, the value of 1045 steel is smallest and the high
value for 304 steel is considered as an effect of the element Cr
with the corrosive resistance. But the figure of 52100 steel is
very small and circular, because 3 shape parameters except for
the reflectivity is smaller as compared with other two
specimens. In these results, the rate of decision in neural
network is expected to be high for materials of all specimens in
the lubricated moving system.

Fig. 8 show the distribution of average values in every 100
wear debris of 304 steel for load of 9.8 N, 49 N and 88.2 N in
the late stage of sliding distance. In this figure, (a) load of 49 N
have high value but 88.2 N have small value in 50% volumetric
diameters. According to the increasing load, (b) the roundness
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Fig. 10. Diagram of multi-layer neural network.

and aspect are the same a tendency as (a). These results are
considered to be a effect of the adhesive wear and the oxidized
wear particle by the increase of the contact pressure and to be a
consequence of the adsorbed film formed by stearic acid in
case of the high load as 88.2N. From the distribution range of
these shape parameters, the decision rate of neural network for
the load is expected to be very hard because a part of the range
is overlapped very much.

Fig. 9 show the distribution diagram of average values for
sliding distance in every 100 wear debris for 1045 steel.
According as the sliding distance increase, the 50% volumetric
diameter show few or no changes, but values of other three
shape parameters are reduced. These results are considered
because of the oxidation effects and the adsorbed film formed
with the transformation of frictional surface and the
deterioration of oil with increasing of the sliding distance.

Identification of Wear Debris with Neural Network
Because the four shape parameters are different in every
condition of friction, only distribution charts of multi-
dimensional shape parameters come hard to identify exactly
the shape characteristics of wear debris. Thus, in order to
identify the pattern of wear debris for the multi-dimensional
inputs, this study presented the possibility of identification of
wear debris with the learning and decision of shape parameters
by the artificial multi-layer neural network [8,9] that based on
the error back propagation.

A neural network is the multi-layer network as shown in
Fig. 10. The processing units of each layer is mock neurons,
for example, a unit (k) in the second layer outputs a active
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Fig. 11. Construction of neural network.

value to the next layer. The active value of a unit is calculated
by yi2=1(x?) of the sigmoid function (f), in this, x2 is the
weighted sum of all weight w;,” that are the connected strength
between a current unit and other input units(y;',j = 0~n") in a
previous input layer. The network proceeds to learn with the
error back propagation method of the supervised learning, and
the weight of each unit is modified by the error between a
output value and a target value.

As shown Fig. 11, the neural network used to this study was
constructed three layers, the hidden layer was one and had 10
units. Input data were four kinds of shape parameter and output
data set up 1 severally for three specimens, 0, 0.5 and 1 for 3
conditions of load. And in the sliding distance, output data set
up 0 and 1 for data of the early and late distance.

The network learnt with the average values of all wear
debris and two classes of small groups in every 100 wear
debris. The convergent condition of learning was less than

.0.001 for total error or less than 30,000 for learning iteration

numbers. The decision criterion was more than 0.7 among 3
output units for specimens, and It was defined that the low load
was from O to 0.3, the middle load was from 0.3 to 0.7 and the
high load was from 0.7 to 1.0 for the load. For the sliding
distance, the criterion was that the early distance was from 0 to
0.5 and the late distance was from 0.5 to 1.0.

Table 2, Table 3 and Table 4 show the decision rates of
identification results for decision criterions of the materials, the
load and the sliding distance by the neural network. Unit
numbers in the hidden layer were 10, and the network learnt
with learning data of the average value of all wear debris and
decided operation conditions with input data of the average
value in every 100 wear debris. Considering these results, for

Table 2. Identification result from neural network

Identification of specimen (%)

Specimen
1045 304 52100
Load 98 N 100 96.4 100
49 N 100 100 100
882 N 100 87.5 100

Learning data: average value of all wear debris
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Table 3. Identification result from neural nefwork

Table 7. Identification result from neural network

Identification of load (%)

Identification of sliding distance (%)

Applied load

Sliding distance

078 m 156234 m
Specimen 1045 79.6 86.3
304 68.3 77
52100 100 100

98 N 49N 882N
Specimen 1045 100 55.4 75.7
304 64.3 8.3 54.2
52100 100 75 100
Learning data: average value of all wear debris
Table 4. Identification result from neural network
Identification of sliding distance (%)
Sliding distance
078 m 156234 m
Specimen 1045 91.7 83.5
304 68.7 75.4
52100 66.6 100
Learning data: average value of all wear debris
Table 5. Identification result from neural network
Identification of specimen (%)
Specimen
1045 304 52100
Load 98 N 100 100 100
49 N 96.4 100 100
882N 89.5 917 100

Learning data: 2 Classes of small groups in every 100 wear
debris

Table 6. Identification result from neural network

Identification of load (%)
Applied load

9.8 N 49 N 882 N
Specimen 1045 100 554 78.4
304 57.1 40.1 64.9
52100 100 100 100

Learning data: 2 Classes of small groups in every 100 wear
debris

the specimen and the sliding distance, the decision rates
generally are high but for the load is not high as shown in Fig.
6. It is considered that the shape characteristics does not
change simply for the load.

Table 5, Table 6 and Table 7 are the decision results from
only learning data of two average values in two classes of
small groups in every 100 wear debris, under the same
condition as Table 2, Table 3 and Table 4.

From these results, learning and the decision rates with that
of 2 classes than average value of all are generally high. After

Learning data: 2 Classes of small groups in every 100 wear
debris

all, in case the distributive range of parameters is large, it
shows that the neural network responds actively for data in the
range of its distribution as it is studied with 2 different average
data.

In addition to this study, adding the number of wear debris
occurred, the volume of a wear debris and the friction
coefficient to parameters, we can expect the obvious potential
that the network will very well identify wear debris taken from
various operating conditions in the oil-lubricated tribological
system.

Conclusions

The number of wear debris taken from various operating
condition in the oil-lubricated tribological system have been
analyzed and identify to determine their shape characteristics
with computer image analysis and artificial neural network.

The results show that friction coefficient decrease as the
load increases due to adsorbed film between two friction
surfaces. It is possible to distinguished the shape characteristics
of wear debris on operating conditions on this study with
respect to the wear processes from which they generated by
computer image analysis. They can be effectively analyzed by
using the average in every 100 wear debris.

By the neural network can decide the operating condition in
the oil-lubricated tribological system using learning data of all
average values for 4 shape parameters. To learn with 2 learning
data, the decision rate of the network for operating conditions
is improved.
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