Symbiotic Microorganisms in Aphids (Homoptera, Insecta): A Secret of One Thriving Insect Group

  • Ishikawa, Hajime (Department of Biological Science, Graduate School of Science, The University of Tokyo)
  • Published : 2001.09.01

Abstract

Most, if not all, aphids harbor intracellular bacterial symbionts, called Buchnera, in their bacteriocytes, huge cells differentiated for this purpose. The association between Buchnera and aphids is so intimate, mutualistic and obligate that neither of them can any longer reproduce independently. Buchnera are vertically transmitted through generations of the host insects. Evidence suggests that Buchnera were acquired by a common ancestor of aphids 160-280 million years ago, and have been diversified, since then, in parallel with their aphid hosts. Molecular phylogenetic analyses indicate that Buchnera belong to the g subdivision of the Proteobacteria. Although Buchnera are close relatives of Escherichia coli, they contain move than 100 genomic copies per cell, and their genome size is only one seventh that of E. coli. The complete genome sequence of Buchnera revealed that their gene repertoire is quite different from those of parasitic bacteria such as Mycoplasma, Rickettsia and Chlamydia, though their genome sizes have been reduced to a similar extent. Whereas these parasitic bacteria have lost most genes for the biosynthesis of amino acids, Buchnera retain many of them. In particular, Buchnera's gene repertoire is characteristic in the richness of the genes for the biosynthesis of essential amino acids that the eukaryotic hosts are not able to synthesize, reflecting a nutritional role played by these symbionts. Buchnera, when housed in the bacteriocyte, selectively synthesize a large amount of symbionin, which is a homolog of GroEL, the major stress protein of E. coli. Symbionin not only functions as molecular chaperone, like GroEL, but also has evolutionarily acquired the phosphotransferase activity through amino acid substitutions. Aphids usually profit from Buchnera's fuction as a nutritional supplier and, when faced with an emergency, consume the biomass of Buchnera cells as nutrient reserves.

Keywords

References

  1. Amako D, Kwon O-Y, Ishikawa H (1996) Nucleotide sequence and presumed secondary structure of the 28S rRNA of pea aphids: implication for diversification of insect rRNA. J Mol Evol 43 : 469-475 https://doi.org/10.1007/BF02337519
  2. Andersson SGE and Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6: 263-278 https://doi.org/10.1016/S0966-842X(98)01312-2
  3. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, and Kurland CG (1998) The genome sequence of Rickettsia prowazekki and the origin of mitochondria. Nature 396:133-140 https://doi.org/10.1038/24094
  4. Aoki S (1977) Colophina clematis (Homoptera, Pemphigidae), an aphid species with soldiers. Kontyu 45: 276-282
  5. Baumann P, Baumann L, Lay C-Y, Rouhbakhsh D, Moran N and Clark MA (1995) Ann Rev Microbiol 49: 55-94 https://doi.org/10.1146/annurev.mi.49.100195.000415
  6. Baumann P, Moran NA, and Baumann L (1997) The evolution and genetics of aphid endosymbionts. Bioscience 47: 12-20 https://doi.org/10.2307/1313002
  7. Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. Interscience Publishers, New York
  8. Campbell BC and Nes WD (1983) A reappraisal of sterol biosynthesis and metabolism in aphids. J Insect Physiol 29: 149-156 https://doi.org/10.1016/0022-1910(83)90138-5
  9. Chang C, Kwok SF, Bleecker AB, and Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544 https://doi.org/10.1126/science.8211181
  10. Clark MA, Moran NA, and Baumann P (1999) Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16: 1586-1598
  11. Charles H and Ishikawa H (1999) Physical and genetic map of the genome of Buchnera the primary endosymbiont of the pea aphid Acythosiphon pisum. J Mol Evol 48: 142-150 https://doi.org/10.1007/PL00006452
  12. Dadd RH, Krieger DL, and Mittler TE (1967) Studies on the artificial feeding of the aphid Myzus persicae. IV. Requirements for water-soluble vitamins and ascorbic acid. J Insect Physiol 13: 249-272 https://doi.org/10.1016/0022-1910(67)90152-7
  13. Dadd RH and Mittler TE (1966) Permanent culture of an aphid on a totally synthetic diet. Experientia 22: 832 https://doi.org/10.1007/BF01897447
  14. Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64: 409-434
  15. Douglas AE (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18: 31-38
  16. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Ann Rev Entomol 43: 17-37 https://doi.org/10.1146/annurev.ento.43.1.17
  17. Eisen JA and Hanawalt PC (1999) A phylogenetic study of DNA repair genes, proteins, and processes. Mutat Res 435: 171-213 https://doi.org/10.1016/S0921-8777(99)00050-6
  18. Febvay G, Liadouze I, Guillaud J, and Bonnot G (1995) Analysis of energetic amino acid metabolism in Acythosiphon pisum: a multidimensional approach to amino acid metablism in aphids. Arch Insect Biochem Physiol 29: 45-69 https://doi.org/10.1002/arch.940290106
  19. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397-403 https://doi.org/10.1126/science.270.5235.397
  20. Fukatsu T and Ishikawa H (1992) Soldier and male of a eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont. J Insect Physiol 38: 1033-1042 https://doi.org/10.1016/0022-1910(92)90012-3
  21. Fukatsu T and Ishikawa H (1993) Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary symbionts of aphids. J Mol Evol 36: 568-577 https://doi.org/10.1007/BF00556361
  22. Fukatsu T and Ishidkawa H (1996) Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol : 383-388 https://doi.org/10.1016/0965-1748(95)00105-0
  23. Gray MW, Burger G, and Lang BF (1999) Mitochondrial evolution. Nature 283: 1476-1481 https://doi.org/10.1126/science.283.5407.1476
  24. Griffiths GW and Beck SD (1977) In-vivo sterol biosynthesis by pea aphid symbiotes as determined by digitonin and electron microscopic autoradiography. Cell Tissue Res 176: 179-190 https://doi.org/10.1007/BF00229461
  25. Gupta RS (1990) Sequence and structur al homology between a mouse t- complex protein TCP-1 and the chaperonin family of bacterial (GroEL, 60-65 kDa heat shock antigen) and eukaryotic proteins. Biochem Internatl 20: 833-841
  26. Hara E, Fukatsu T, Kakeda K, Kengaku M, Ohtaka C, and Ishikawa H (1990) The predominant protein in an aphid endosymbiont is homologous to an E. coli heat shock proein. Symbiosis 8: 271-283
  27. Hara E and Ishikawa H (1990) Purification and partial characterization of symbionin, an aphid endosymbiont-specific protein. Insect Biochem 20: 421-427 https://doi.org/10.1016/0020-1790(90)90063-Z
  28. Harada H and Ishikawa H (1993) Gut microbe of aphid closely related its intracellular symbiont. Biosystems 31: 185-191 https://doi.org/10.1016/0303-2647(93)90048-H
  29. Harada H, Oyaizu H, Kosako Y, and Ishikawa H (1997) Erwinia aphidicola, a new species isolated from pea aphid, Acyrhosiphon pisum. J Gen Appl Microbiol 43: 349-354
  30. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, and Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330-334 https://doi.org/10.1038/333330a0
  31. Hongoh Y and Ishikawa H (1994) Changes of mycetocyte symbiosis in response to flying behavior of alatiform aphid (Acyrthosiphon pisum). Zool Sci 11: 731-735
  32. Houk EJ, Griffiths GW, and Beck SD (1976) Lipid metabolism in the symbiotes of the pea aphid, Acyrthosiphon pisum. Comp Biochem Physiol 54B: 427-431 https://doi.org/10.1016/0305-0491(76)90270-4
  33. Houk EJ and Griffiths GW (1980) Intracellular symbiotes of the Homoptera. Ann Rev Entomol 25: 161-187 https://doi.org/10.1146/annurev.en.25.010180.001113
  34. Ishikawa H (1976) Arthropod ribosomes: integrity of ribosomal ribonucleic acids from aphids and water-fleas. Biochim Biophys Acta 435: 258-268 https://doi.org/10.1016/0005-2787(76)90107-6
  35. Ishikawa H (1982) Host-symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochem 12: 613-622 https://doi.org/10.1016/0020-1790(82)90048-8
  36. Ishikawa H (1984) Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont. Insect Biochem 14: 417-425 https://doi.org/10.1016/0020-1790(84)90098-2
  37. Ishikawa H (1987) Nucleotide composition and kinetic complexity of the genomic DNA of an intracellular symbiont in the pea aphid Acythosiphon pisum. J Mol Evol 24: 205-211 https://doi.org/10.1007/BF02111233
  38. Ishikawa H (1989) Biochemical and molecular aspects of endosymbiosis in insects. Int. Rev Cytol 116: 1-45
  39. Ishikawa H (1996) Intracellular symbiosis in insects. In: Colwell RR, Simidu U, and Ohwada K (eds), Microbial Diversity in Time and Space, Plenum Press, New York, pp 93-100
  40. Ishikawa H (1999) Chemically-defined diets in studies of the symbiosis between Homoptera and intracellular microorganisms. Int J Ecol Environ Sci 25: 267-276
  41. Ishikawa H, Hashimoto H, Yamaji M (1986) Symbionin, an aphid endosymbiont-specific protein. III. Symbionin present in the male, obipara and fundatrix. Insect Biochem 16: 299-306 https://doi.org/10.1016/0020-1790(86)90039-9
  42. Kakeda K and Ishikawa H (1991) Molecular chaperone produced by an in intracellular symbiont. J Biochem 110: 583-587
  43. Kobayashi M and Ishikawa H (1993) Breakdown of indirect flight muscles of alate aphids (Acythosiphon pisum) in relation to their flight, feeding and reproductive behavior. J Insect Physiol 39: 549-554 https://doi.org/10.1016/0022-1910(93)90036-Q
  44. Kobayashi M and Ishikawa H (1994) Mechanisms of histolysis in indirect flight muscles of alate aphids (Acythosiphon pisum). J Insect Physiol 40: 33-38 https://doi.org/10.1016/0022-1910(94)90109-0
  45. Komaki K and Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48: 717-722 https://doi.org/10.1007/PL00006516
  46. Komaki K and Ishikawa H (2000) Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. Insect Biochem Mol Biol 30: 253-258 https://doi.org/10.1016/S0965-1748(99)00125-3
  47. Komaki K, Sato S, and Ishikawa H (1996) A characteristic difference among GroEL homologs from intracellular symbionts of closely-related species of aphids. Zool Sci 13: 320-323
  48. Kring JB (1972) Flight behavior of aphids. Ann Rev Entomol 17: 461-492 https://doi.org/10.1146/annurev.en.17.010172.002333
  49. Kwon O-Y, Ogino K, and Ishikawa H (1991) The longest 18S ribosomal RNA ever known: nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid, Acythosiphon pisum. Eur J Biochem 202: 827-833 https://doi.org/10.1111/j.1432-1033.1991.tb16439.x
  50. Margulis L (1970) Origin of Eukaryotic Cells. Yale Univ Press, New Heaven
  51. Matsumoto K, Morioka M, and Ishikawa H (1999) Phosphocarrier proteins in an intracellular symbiotic bacterium of aphids. J Biochem 126: 578-583
  52. Miller SG and Silhacek DL (1995) Riboflavin binding proteins and flavin assimilation in insects. Comp Biochem Physiol 110B: 467-475 https://doi.org/10.1016/0305-0491(94)00184-V
  53. Mittler TE (1958) Studies on the feedling and nutrition of Tuberolachnus salignus (Gmelin). 3. The nitrogen economy. J Exp Biol 35: 626-638
  54. Moran NA (1996) Accelerated evolution and Mullers ratchet in edosymbiotic bacteria. Proc Natl Acad Sci USA 93: 2873-2878 https://doi.org/10.1073/pnas.93.7.2873
  55. Moran NA and Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol 9: 15-20 https://doi.org/10.1016/0169-5347(94)90226-7
  56. Moran NA, Munson MA, Baumann P, and Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using insect host. Proc Roy Soc Lond B 253: 167-171 https://doi.org/10.1098/rspb.1993.0098
  57. Morin S, Ghanim M, Zeiden M, Czosnek H, Verbreek M, and van den Heuvel JFJM (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256: 75-84 https://doi.org/10.1006/viro.1999.9631
  58. Morioka M and Ishikawa H (1992) Mutualism based on stress:selective synthesis and phosphrylation of a stress protein by an intracellular symbiont. J Biochem 111: 431-435
  59. Morioka Mand Ishikawa H (1998) Insect chaperonin 60: symbionin. In: Lorimer GH and Baldwin TO (eds). Methods in Enzymology, Vol. 290, Academic Press, New York, pp 181-193
  60. Morioka M, Muraoka H, and Ishikawa (1993) Chaperonin produced by an intracellular symbiont is an energy-coupling protein with phosphotransferase activity. J Biochem 114: 246-250
  61. Morioka M, Muraoka H, Yamamoto K, and Ishikawa H (1994) An endosymbiont chaperonin is a novel type of histidine protein kinase. J Biochem 116: 1075-1081
  62. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2-9 https://doi.org/10.1016/0027-5107(64)90047-8
  63. Munson MA, Baumann P, and Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov.;a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41: 566-568
  64. Nakabach A and Ishikawa H (1997) Differential display of mRNAs related to amino acid metabolism in the endosymbiotic system of aphids. Insect Biochem Mol Biol 27: 1057-1062 https://doi.org/10.1016/S0965-1748(97)00092-1
  65. Nakabachi A and Ishikawa H (1999) Provision of riboflavin to the host aphid, Acythosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45: 1-6 https://doi.org/10.1016/S0022-1910(98)00104-8
  66. Ogino K, Eda-Fujiwara H, Fujiwara H, and Ishikawa H (1990) What caused the aphid 28S rRNA to lack the hidden break? J Mol Evol 30: 509-513 https://doi.org/10.1007/BF02101106
  67. Ohta N, Lane T ,Ninfa EG, Sommer JM, and Newton A (1992) A histidine protein kinase homologue required for regulation of bacterial cell division and differentiation. Proc Natl Acad Sci USA 89: 10297-10301 https://doi.org/10.1073/pnas.89.21.10297
  68. Ohta T (1987) Very Slightly deliterious mutations and the molecular clock. J Mol Evol 26: 1-6 https://doi.org/10.1007/BF02111276
  69. Ohtaka C and Ishikawa H (1993) Accumulation of adenine and thymine in a groE-homologous operon of an intracellular symbiont. J Mol Evol 36: 121-126 https://doi.org/10.1007/BF00166247
  70. Ohtaka C, Nakamura H, and Ishikawa H (1992) Structure of chaperonins from an intracellular symbiont and their functional expression in E. coli groE mutants. J Bacteriol 174: 1869-1874
  71. Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Ann Rev Genet 26: 71-112 https://doi.org/10.1146/annurev.ge.26.120192.000443
  72. Pyle L, Corcoran LN, Cocks BG, Bergemann AD, Whitley JC, and Finch LR (1988) Pulsed-field electrophoresis indicates larger-than-expected sizes for mycoplasma genomes. Nucleic Acids Res 16: 6015-6024 https://doi.org/10.1093/nar/16.13.6015
  73. Sasaki T, Aoki T, Hayashi H, and Ishikawa H (1990) Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids, Acythosiphon pisum. J Insect Physiol 36: 35-40 https://doi.org/10.1016/0022-1910(90)90148-9
  74. Sasaki T, Fukuchi N, and Ishikawa H (1993) Amino acid flow through aphid and its symbiont: studies with $^{15}N-labeled$ glutamine. Zool Sci 10: 787-791
  75. Sasaki T, Hayashi H, and Ishikawa H (1991) Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum maintained on artificial diets. J Insect Physiol 37: 749-756 https://doi.org/10.1016/0022-1910(91)90109-D
  76. Sasaki T, Ishikawa H (1993) Nitrogen recycling in the endosymbiotic system of the pea aphid, Acyrthosiphon pisum. Zool Sci 10: 779-785
  77. Sasaki T, Ishikawa H (1995) Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 41: 41-46 https://doi.org/10.1016/0022-1910(94)00080-Z
  78. Sato S and Ishikawa H (1997) Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon. J Bacteriol 179: 2300-2304
  79. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, and Ishikawa H (2000) Genome sequence of the endocellular symbiont of aphids Buchnera sp. Nature 407: 81-86 https://doi.org/10.1038/35024074
  80. Shigenobu S, Watanabe H, Sakaki Y, and Ishikawa H (2001) Accumulation of species-specific amino acid replacements that cause loss of particular protein functions in Buchnera, an endocellular bacterial symbiont. J Mol Evol: in press https://doi.org/10.1007/s002390010227
  81. Srivastava PN and Auclair JL (1971) Influence of sucrose concentration on diet uptake and performance by the pea aphid, Acythosiphon pisum. Ann Entomol Soc Am 64: 739-743
  82. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EY, and Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754-759 https://doi.org/10.1126/science.282.5389.754
  83. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 48: 582-592 https://doi.org/10.1073/pnas.85.8.2653
  84. van den Heuvel JFJM, Verbreek M, and van den Wilk F (1994) Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen Virol 75: 2559-2565
  85. Wernegreen JJ, and Moran NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol Biol Evol 16: 83-97
  86. Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, and Matsuda K (2001) Chaperonin turned insect toxin. Nature 411: 44 https://doi.org/10.1038/35075148