Random Vibration Analysis of Nonlinear Stochastic System
under Earthquake Using Statistical Method
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ABSTRACT

Industrial machines are sometimes exposed fo the danger of earthquake. In the design of a mechanical system, this factor should be accounted
for from the viewpaint of reliabiiity. A method o andlyze o complex nonfinear sfructure system under random excitation is proposed. First, the actual
random excitation, such as earthquake, is approximated fo the corresponding Gaussion process for the statistical analysis. The modal equations of
overall system are exponded sequentially. Then, the perturbed equations are synthesized info the overall system and solved in probabilistic way. Several
statistical properties of a random process that are of inferest in random vioration applications are reviewed in accordance with nonlinear sfochastic
problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the

numerical simulation proved the efficiency of the proposed method.
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1. Introduction

In recent years, the trend in mechanical systems has
been toward high-speed and lightweight ones in many
industrial machines. These conditions can cause trouble of
a nonlinear vibration in mechanical systems. Hence, it has
become important to consider the nonlinear characteristics
in vibration analysis, design of the structure system. For a
nonlinear system, exact solutions are generally not possible
and approximate solutions can be obtained numerically.
This method can be extremely time-consuming and is not
practical, especially for large DOF system. Therefore, Iwatsubo
et al" have proposed a new method to analyze the
vibration of a nonlinear mechanical system. Moon et al.”
have reported study on the vibration of mechanical system
to analyze the dynamic problems of nonlinear MDOF systerrs.
They developed the SSM(substructure synthesis method)
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technique to reduce the overall size of the problem for the
nonlinear structure, and obtained approximate solutions of
the nonlinear system using a perturbation method. On the
other hand, it is necessary that a high-speed rotating system
used for the jet engine of an aircraft, power plant turbine,
etc. promptly pass a critical speed. Accordingly, the casing
is often modeled elastically to decrease the critical speed.
When random excitation excites such a mechanical system,
the casing is excited to contact with the rotor and there is
a danger that the bearing will be damaged. Therefore, the
investigation of the random response of rotating machinery
is very important from the viewpoint of disaster protection.
Soni and Srinivasan® have reported the earthquake analysis
of rotor system using the response spectrum method and
time response method in deterministic system. Matsushita
et al.” have reported seismic analysis of a rotor system.
They used the real earthquake data to analyze the linear
response. However, the vibration of nonlinear rotor systems
under a random excitation force has been investigated few
so far. Moreover, the vibration analysis of a nonlinear
rotor-bearing-casing system utilizing a statistical approach
to a seismic wave is not found in past research. Therefore,
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Random Vibration Analysis of Nonlinear Stochastic System Under Earthquake using Statistical Method

this paper proposes an analytical method for nonlinear
vibration of mechanical system against a random excitation
by applying the statistical method.

2. Method of analysis

2.1 Nonlinear system excited by earthquake

For the simple explanation, a single DOF vibratory system
with the nonlinear restoring force of the system, which is
excited by earthquake, is considered. The nonlinear equation
of motion can be expressed in higher order terms of the

displacement £w;x’ as
X+200,% +0lx +e0ix’ =X, @

where ¢,m, are damping ratio and natural frequency, re-
spectively. € is a small parameter. X is earthquake excitation,
which has spectrum density §, (Q). The excitation X is
regarded as a random process; hence, it is extremely
difficult to obtain an exact solution x(t) . Thus, solutions can
be obtained approximately. 1t should be noted that the
solution itself for random inputs is not the ultimate goal
in stochastic analysis of a nonlinear system. Meaning of
the stochastic analysis such as Eq. (1) is to decide the
statistic information of displacement x . Generally, the statistic
characteristic of random process is decided from the PDF
(probability density function) and PSD{power spectrum density)
function of the system. Accordingly, for the probabilistic
analysis of nonlinear random response, PSD and PDF of
excitation forces should be obtained. To elaborate, a
nonlinear system with the inputs, which are assumed to
be a Gaussian random process, is considered. Because of the
nonlinear characteristic, the output is no longer a Gaussian
random process. Hence, the statistic characteristic of its
vibration cannot be evaluated easily. Therefore, an adequate
method to evaluate the statistical properties of the response
of a nonlinear structure system should be developed. For
this reason, the earthquake excitation needs to be approximated
to Gaussian stationary process by reasonable procedures.
Thus, an adequate approach to handle the earthquake as
random process is introduced hereafter. A typical record of
earthquake-induced ground acceleration is shown in Fig. 1.
Treating this graph as a sample function of the underlying
stochastic process, it is clear that ground acceleration is
inherently non-stationary.(é) However, if the principal shock
duration T, as indicated in Fig. 1, is limited to the period
corresponding to the strong-motion portion over which
the peak structural response occurs, the process can be
regarded as a stationary random process from the viewpoint
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Fig. 1 Earthquake excitation

of the amplitude envelope of earthquake graph. A simple
stationary representation of earthquake-induced acceleration
can be expressed based on the study of frequency content
of a number of strong ground-motion records.® Input PSD
of the absolute ground acceleration can be expressed as

o’ +ac Q'
S.(Q)= -

S, ey

2(0 -0 )2 +4¢'w

where @, ¢, and S, are a dominant frequency, damping
ratio of filter and spectrum intensity of random process,
respectively. @,, ¢, and S are parameters to be determined
from the earthquake records. To observe the effect of
earthquake and the response of the system, a formulation
of PSD function is introduced as

Sna (€)= Sy () €)

where @ is a maximum value of earthquake input.

For instance, Fig. 2 shows Taft earthquake(1952) and its
PSD and PDF, which is regarded as stationary narrow
band process(g, = 041, ®, =1875%¢/,, a=175%2, S=
0.0132m’/sec’/Hz). Fig. 2(b) shows the corresponding erratic
earthquake PSD and the PSD function g (Q), which shows
good agreement. The erratic earthquake PSD is obtained
from the part of earthquake data during 3~18 seconds, which
can be regarded as stationary process from the viewpoint
of the amplitude envelope of earthquake graph. From the
Fig. 2(b), it is estimated that §,_(Q) can be applicable to
solve the response statistically. PDF of earthquake input is
obtained from the part of earthquake during 3~18 seconds,
which shows a Gaussian distribution, as shown in Fig. 2(d).
The part of the earthquake during 3~18 seconds has the
statistic properties as mean( = -0.0062). Thereby, the part of
earthquake excitation process can be regarded as Gaussian,
stationary random process with mean zero.

2.2 Response analysis by perturbation method

According to the procedure described above, the random
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Fig. 2 Taft earthquake(1952)

excitation is expressed by Gaussian stationary process. Then,
the nonlinear equation of motion reinstate with approxi-
mated Gaussian process.

X+260 %+ 0ix+ e x =W (1) 4)

The excitation W (r) is a Gaussian stationary narrow band
random process with zero-mean, which has the spectral
density function §,(Q). x(¢) is the stationary response
of a linearly damped Duffing system subjected to a Gaussian
process excitation. Here, x(z) is not Gaussian process,
generally. However, if the system is lightly damped and if
the nonlinearity is small(that is, £<1), then x(¢) is still
expected to be a narrow band random process, as shown
in Fig. 3(¢ =0.3, ¢ =0.1, ®=5.23).

The response has the mean(=-0.0044). PDF of nonlinear
response shows a Gaussian distribution with mean zero.
Thus, the response of Eq. (4) can be analyzed approximately
by applying the perturbation theory. In Eq. (4), the small

parameter £ can be perturbed as x=x,+€x,.

¥, +26m,%, + wjx, =W (£) ©)

% + 200, %, + 0y x, = f,(x,) (6)

where f (x,) =—€w;x;. From Eq. (5), (6), the approximating
functions x,, x, can be obtained sequentially. The zeroth
order approximation x,is Gaussian process. Its probabilistic
characteristics can be obtained by classical methods of
linear random vibration. However, the characterizaticn of
x, is less simple because the input is now a non-Gaussian
process whose mean and covariance function are not
generally available in a closed form. Moreover, the de-
termination of the second moment characterization of the
approximate solution x = x, +€x, also requires the correlation
function of x,, x, , which is not readily available. In handling
this problem, the objective is the determination of the
stationary mean and covariance function of the first order
approximation, as given in Eq. (6). Covariance function
becomes due to its stationary characteristic,

E{x(t+7)x(t)} = R(T) = E{x,(t +T)x, (1)}
+EE{xy(t +T)x, (1)} +E{x,(t + T)x, (1)} )

where each term can be obtained from the random vibration
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of linear system as >
Y ol =[ Sy @|HQ[ a2 (13)

E{x,(t+7T)x,()}
= [ [ EWG+T-0)W(1~8,)}h(6)h(8,)d0,d8,

E{x,(t+7)x,(1)}

= [ [TEW+T-6)1,(~6,)1h(6)(6,)d6,d0, )

E{x,(t+7)x,(0)}

= [T EW =6 f,+7-6,)}(6,)h(6,)d6,do, (10)

where (@) is the impulse response function corresponding
to € =0. The determination of the expectations in Eq. (8),
(9), (10) involves lengthy but straightforward calculations
of expectations of polynomials in Gaussian variables. Then,
the spectral density of the nonlinear response is obtained
by taking the Fourier transform of Eq. (7).

$,(Q) =S, (Q|HEQ [1-6ewc’ Re{H(Q)} ] (11)
where o2
X, (). H(Q) is frequency response function of linear equation
between the excitation and the displacement of response. The

is the stationary variance of the linear response

corresponding variance can be obtained from the covariance
R(t) of the system by letting 7 =0, which is the same value
of the mean square response of the nonlinear vibration. Since
the mean response, E[x(¢)], is zero, the variance is equal
to the second moment E[x(r)]

E[xX’()]=R(0)=0] [1 —-6ew; '[:{R(r)h(r)}dr} (12)
The mean square value of the linear response in terms

of the system response function and the spectral density
of the input random process can be obtained as

This procedure is applied to analyze the complex multi-
DOF nonlinear system.

2.3 Modeling of nonlinear rotor system

For the analysis, the system shown in Fig. 4 is considered
as a mechanical system. The rotor has nonlinearity with
respect to its material property. For the dynamic analysis
of complex systems, the SSM can be applied. The overall
system is divided into three components, i.e., the rotor is the
nonlinear component, the casing is the linear component,
and the bearing is the assembling component. The coordinate
system of the rotor-bearing-casing system is shown in Fig. 4.
The 0 -X,Y2Z coordinate system is fixed in rotor, such
that the origin coincides with the center of the shaft where the
X, —axis is vertically upwards, the y, — axis is horizontal
and perpendicular to the shaft, and the Z, — axis is along
shaft. The O, — X Y, Z_ coordinate system is fixed in casing,
The O, — X,Y,Z, is an absolute coordinate system, which
is fixed in basement. The U, (=X, -X_,Y,-Y..Z,-Z,)
is a relative displacement between rotor and casing. The
U(=X.-X,.Y.-Y,,Z,—Z,) is a relative displacement
between casing and basement. X is an acceleration of the
earthquake input.

The shaft and casing components are modeled using
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Fig. 4 Mechanical system for analysis
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FEM. When the rotor is modeled by FEM, the nonlinear
stiffness term of the rotor is determined in approximately.
Then, the nonlinear restoring force is formulated in a
complex form including nonlinear coupling terms of
displacement. However, for the first stage of the analysis,
it is considered that the type of nonlinear restoring force

{R.}, which is represented as™?

{R}=['K{'X }+elK,]{'X]},
{'X,}=1{x.6,,y,.6,}, {'X}={x.60.,y.6.) (19

where ['K,], and [K,,] are the stiffness matrix and nonlinear
stiffness term of the element, respectively. £ is a small
parameter. The superscript 1 denotes the nonlinear component.
(#)" denotes the transpose of (e). The external force, which
acts on the rotor, is considered as the unbalance force and
the earthquake acceleration. Internal force is taken into
consideration because the nonlinear component can be
synthesized through the internal force with the other compo-
nents. By considering the boundary conditions, the equation

of motion for the nonlinear component can be written as®®
['MI{'U}+U'KI{'U,} +elK, 1V}
={'F,0}+('F}+{'F,) (15)

where ['M] is a mass matrix. {'F, (1)} is an external force
vector by unbalance of rotor. {'F, } is an internal force vector.
{'F;} is an external force against the earthquake acceleration

(o) =-1'"MUINHX, ) (16)

where {I} is a vector which shows the direction of the
earthquake. In order to apply modal analysis, modal
coordinate system is introduced by using the modal matrix
[](D] of the only linear system. Then, the displacement
{'U,} in physical coordinate system can be transformed

into the modal displacement approximately as®

{EY+['0?1{'EY +el 'k, 1 'E%)
={"f, O+ {'f ) +el'f,) (17)

where (If, O} '®I"('F, () and e{'f,(O}=['@T {'F,})
are the external and internal forces in modal coordinates.
(' fo}=USHX .}, ['S] is a mode-participation factor of its
mode) is the external force against earthquake in modal
coordinates. £['k, ] is the nonlinear term in modal coordi-
nates. According to the previous section, Eq. (17) can be
expressed with approximated Gaussian stationary random

process W([) as

UEY+ '@ 1 E +el 'k, HUE Y = (WD) +el'£,) (18)

Here, the perturbation method is introduced to solve the
nonlinear equation. In Eq. (18), the small variant £['k, ] can
be regarded as the perturbation parameter term, because
the variant €[ 'ky] is small relative to ['@’]. The dynamic
responses {'&} can be expanded in terms of a series of
the small parameter £ expressed as

(&) =V +el€V1+e(E7 )+, (19)

where superscripts denote the perturbation order. Then,
the perturbed equations are evaluated as

CEO Mol )E O = (WO £,
(EV 0’1 GV =, CEN+{A") (20)

where {'f ,} includes the nonlinear stiffness term. {!w ()}
is exciting Gaussian narrow band stationary random process.
{70} and {'f,"} are perturbed internal forces expressed
by modal displacements. {'f, ('6V)} ="k, J{'**}.

2.4 Equations of motion of an assembled system

The casing is modeled as linear component and the
equation of motion is obtained readily

MU +PKNU, Y ={°F, ) +{°F,} (21)

where [2M] and [?K] are the mass and stiffness matrix,
respectively. {*F, } is the internal force vector. {*F,}(= —[°M]
{I}{X,}) is an earthquake external force term. After the
eigenvalue analysis, the equation of motion is changed into
modal coordinate({zUc}E[zd)]{zé}). The internal force
is introduced in the equation because the linear component
can be synthesized through the internal force with the
other components. Even the casing component is linear
system, this component is perturbed as same as the nonlinear
component, because the higher order harmonic oscillation
which is occurred in the nonlinear component is translated
through the higher order perturbed equation as'®

CEO ' WED) =W+ 1),

CEVI+MIE ") =2 1,") @)

where {2£”} and {*f"} are the perturbed internal forces.
(?w®@1} is the external force term in modal coordinate
system, which is expressed with approximated Gaussian
stationary random process W(t). To apply the SSM, as
an assembling component, simple linear ball bearings are

H5H M6z (8 M235) 2001.12

o

=Zx|FZS] =28 59
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considered. Generally, there is a damping term in the
bearing, but it is ignored in this study. The restoring force
of the bearing is modeled as the linear term, where the
force and displacement are expressed in matrix form as
(kMU =1} Uh, U, =1,) 23)
where [’k,] (j=1,2) are the terms of bearing coefficient.
{(*f,}, {3f,} are the internal force vectors of the nonlinear
component and linear component, respectively. {/ U w1 18
a relative displacements between the rotor and casing corres-
ponding to the bearings. In order to obtain the overall
equation, the perturbation parameter € of the nonlinear
component is introduced. Then, the displacement is expressed
as

U =0 +el’UyY (j=1,2) 29)

Accordingly, by using Eq. (24), the internal force vectors
can be perturbed as

Uh=UA e VA (25)

In order to synthesize the components, Egs. (20), (22)
and (25) are combined and rewritten according to the
perturbation order. The equation of order e" =12
can be expressed as

EVHIKONHED = {FP ()} (26)
é(”} {{15(1) (1) sz,i) 26(1)} } {F(t)(”
{twoy ! “)} LAY WOV Y, and [RV] s the
stiffness matrix of the overall system which is composed
of all of the components. The overall system is obtained
by assembling those component equations. The equation

of order £ is obtained as
{|£;<1)}+|:[1wiz]+[al] [az] j|{]§i(”}_{lfn(l>}
k3 [a,] o’ 1+[a,1] [ €" A
27)

(a1 =851 Ukp P 1, [a21=104 1" [k 10521,
[03]=[¢b2]T[|kb2][¢bl]’ [a4] :[¢b2]T[2kb2][¢b2] The exter-

1 p0)
nal force term is {{ T }} {[q) WO }[d’b:] (i=12),

where

CARY lgal Wy
the eigenvector matrix of the assembling region, which is
derived from the eigenvector of each substructure corres-
ponding to its bearing. The external force term of order

M s obtained as

{{ ‘f;“}} ) {[cpﬂr Ak HE " + 19, T ~{‘f;”}}
{2fn(1)} [¢"2]T.{O}+[¢h2]r.{thm} .

2.5 Statistical properties of nonlinear response

€

The earthquake is used as the excitation wave, which is
regarded as the Gaussian stationary random process, by
considering the strong motion duration. After the eigenvalue
analysis of the overall system with Eq. (27), the order
e coordinate {n”’} of the overall system is introduced
for modal analysis as

) =[o,1{n}, "y =@, 1{n"} (28)

[®,] is the eigenvector matrix of the overall system. The

equation of the motion of order £ is

Orom® =W, (=1,2,3,,n) 29)

ni

i + 26w, 1!

w? is the eigenvalue of the overall system. W, is the
external force term in modal coordinates. The damping of
the system is assumed to be the proportional damping of
the eigenvalue. According to the linear random vibration
theory, the solution 77/ () of the linear differential equation
may be readily obtained. Then, the equation of the motion

of order ¢ can be described as

i + 28w +oin = £ @), (=12,--,n) (30)

where fr;i‘)(nfo))(: —Bn»3) is the external force term. B2
is the nonlinear coefficient. The response is

@y =-p> fni‘“” (t—T)h,(T)dT (31)
h;(2) is the impulse response function of the linear system.

Accordingly, the response of a nonlinear system can be
evaluated by perturbation theory as

n; =n” +en{" (32)

(0) M

s T
statistical properties of the response. The covariance of the

The equations of 7; can be used to compute various

nonlinear response, computed to the first order of €, can

be obtained as

R, @ =[ {5 @H, @f
_%eajt_(o)S,‘v?)(Q)|H,.(Q)|2H,.*(Q)cosQT}dQ (33)
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where f(Q) is conjugate function of H, (Q). Then, the
spectral density S, (€2) of the nonlinear response is ob-
tained by taking the Fourier transform of the covariance
function as

S, (@) =S Q|H, Q) [1-688707, Re[H,@]] (39

where Re[H;(Q)] is the real part of H,(Q). The corres-
ponding variance can be obtained from the covariance
Rﬂi ni (1) of the system by letting 7 =0, which is the same
value of the mean square response of the nonlinear
vibration

ol =0 [1 —6¢B; [ 1R, (D), (D) }dr} (35)

2
ni(\))
of the linear response. Examining O',i. , it appears that if

the system is nonlinear with light damping, weak nonlinearity
and the excitation random process is Gaussian stationary,

The stationary variance o~ is the mean-square value

then the response spectral density, covariance function,
and mean square value, can all be calculated from the
knowledge of the spectral density §, (Q) of the excitation
random process and the magnitude |H (Q)| of the frequency
response.

3. Numerical results

3.1 Model for Analysis

A nonlinear rotor system, which is shown in Fig. 4, is
considered. The rotor is considered as a uniform beam and
the casing is also considered as a uniform beam approximately
for the simplicity of calculation. The casing is constrained
to a foundation at both ends of the casing. As a support,
ball bearing is considered for aircraft engine turbine or
power plant turbine. The properties of the rotor system
are tabulated in Table 1.

The rotor is modeled by the twenty beam elements and

x 10

Table 1 Properties of the rotor system

Length of shaft Lmm) 800
Length of casing L(mm) 800
Diameter of shaft Dg(mm) 16
Diameter of casing Dp{mm) 50
Young's modulus of shaft, casing{N/m?) 2.1x10"
Density of shaft & casing P (kg/m) 7.81x10°
Bearing coefficients £,(N/m) 1.0x10°
Nonlinear coefficient Y 0.1

the casing is also modeled by the twenty beam elements.
The modal damping ratios of the system is given by & = 0.05.
The exciting force of the rotor by unbalance is assumed as
F ()= FOQ2 cos({2t + ¢) in x-direction, where F;, ¢ are
unbalance and phase angle, respectively. Rotating speed
(€2 =540rad/sec) is assumed to be near first critical speed
(®Wq=583rad/sec) of the rotor system. The unbalance of
the rotor system is located at the middle of the shaft with
a value of 0.044 Kg -m /(£24)*.

sec

3.2 Response of the nonlinear system

Linear response of the system against the random excitation
is examined. The responses are computed by SSM with
modal analysis procedure, which are shown in Fig. 5.

As can be noticed from Fig. 5(a), the response includes
the earthquake response of the system. Probability density
of the system is showed in Fig. 5(b) in accordance with
relative amplitude of the system. Average value of response
is 0.000186. These properties prove that the response is
Gaussian stationary random process. In Fig. 5(c), the power
spectrum of the response is shown. It can be observed that a
typical earthquake response power spectrum is obtained,
which has a low frequency component. The simulated
PSD shows well fitted with the analytical response of PSD
S, (), which is obtained with €=0.0. The spectral density
is related to the stationary variance 02(0) = 0.0059, which
is the same as the mean-square value of the linear response.
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Here, the statistical properties of nonlinear random vibration
of the stochastic system verses the strong motion duration
of excitation are investigated. Correlation, spectrum density
and its variances, which are important to reliability analysis,
are considered.

Those properties of nonlinear responses are calculated
according to the procedure of nonlinear random vibration
analysis, which is computed to the perturbation first order.
Spectrum of harmonic excitation and earthquake excitation
are obtained and applied to the system. It is regarded that
the nonlinear response depends on the size of the perturbation
parameter( € ), which shows nonlinear characteristics. To
this end, two kinds of analysis are carried out, i.e, the
perturbation parameters are set to €=0.2, €=05. In Fig. 6,
the PSD of the nonlinear responses of the system at the
middle of shaft and casing is showed with various pertur-
bation parameters.

The response of SSM is calculated by taking 20 modes.
When the nonlinear parameter is €=0.0, the PSD shows a
linear response. The each PSD of the system, such as rotor
and casing, shows a characteristic of earthquake random
process. Investigation of the PSD reveals that the PSD is
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smaller when the perturbation parameter becomes bigger,
which is the nonlinear response in terms of the nonlinear
characteristic. Variance of the nonlinear response is evaluated
from the nonlinear response.

Fig. 7(a) shows the variance of the nonlinear response at
the middle of rotor by changing its numbers of adopting
mode 20, 40. The calculated variances are investigated for
various values of nonlinear parameter. To prove the computing
efficiency, those values are compared with the results of
simulation. The response of simulation is calculated by
direct integration the equation of motion against the excitation
where the overall equation of motion of the system has
168 DOF. The rotor has 84 DOF because it has 21 nodes
and there are 4 variables per mode. The casing also has
84 DOF so that the total DOF is 168. Investigation of the
variance reveals that the value shows a decreases with € in
the spread of displacement about equilibrium point when
€=(. This is consistent with our intuition which suggests
that stiffer systems exhibit smaller displacements, and
with the observation that the system stiffness increases
with nonlinear parameter. This result also reveals that the

variance displacement of a hardening spring nonlinear
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Fig. 6 Comparing the PSD with nonlinear parameters
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Fig. 7 Displacement variance of the system

system is always less than that of the corresponding linear
system. Fig. 7(b) shows the variance of the nonlinear response
at the middle of rotor by using its numbers of adopting
mode 20.

The calculated variances are investigated for various
values of nonlinear parameter against maximum values of
exciting acceleration. To prove the nonlinear effect, those
values are compared with the results of linear one, which
are obtained by same calculation condition. It is observed
that according to the input level, variance of the responses
become large. When the nonlinear parameters become
large, then the response changes a lot.

Next, the computing time to analyze the nonlinear
random vibration verses the strong motion when the
duration (=3~18 seconds) of excitation is compared. The
variances for the values of the result to be compared are
used, as shown in Fig. 7(a). The computer used in this
analysis is a LOGIX, IBM personal computer. In the case of
the numerical simulation, it takes 20 minutes 45 seconds.
But for the proposed method; it takes 5 minutes 28 seconds, 7
minutes 30 seconds to obtain the result, when the number of
adopting modes are 20,40, respectively. As a result, it can be
shown that a drastic reduction in calculation time can be
achieved, keeping its computing accuracy. This is an important
factor in the analysis of structural dynamics against random
excitation with a large number of degrees of freedom.

4. Conclusions

In this paper, the random vibration analysis method of
a nonlinear stochastic system was theoretically formulated
when the actual random excitation is regarded as a Gaussian

stationary random process. The formulation is concerned
with reducing the number of degrees of freedom for each
component by modal substitution. All of the components
are then assembled together and the random response of the
overall system is analyzed statistically against earthquake
excitation. It is shown that nonlinear random responses
could be efficiently calculated according to the selected
number of vibration modes. Several statistical properties
of the random responses that are of interest in nonlinear
random vibration applications are reviewed. The results
reported herein provide a better understanding of the
nonlinear random vibration. Moreover, it is believed that
those properties of the results can be utilized in the
dynamic design of the nonlinear stochastic system.
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