Measurement of Ultrasonic Field Propagation Characteristics in Biological Tissues Using a Two-dimensional Array Hydrophone

2차원 배열 수중청음기를 이용한 생체조직에서의 초음파 음장 전파특성 측정

  • ;
  • ;
  • ;
  • ;
  • Xiu-Fen Gong (State Key Laboratory of Mordern Acoustics, Institute of Acoustics, Nanjing University)
  • 하강열 (부경대학교 물리학과) ;
  • 김무준 (부경대학교 물리학과) ;
  • 현병국 (부경대학교 대학원 음향진동공학협동과정) ;
  • 채민구 (부경대학교 대학원 음향진동공학협동과정) ;
  • Published : 2001.07.01

Abstract

Because the biological tissue with inhomogeneous acoustic properties does not keep a particular shape, the measurement of propagation characteristics of ultrasonic fields by the conventional scanning method with a miniature hydrophone is difficult. In this study, a two-dimensional may hydrophone was fabricated using the PVDF (Polyvinylidene fluoride) piezo-electric film and a ultrasonic field measurement system with it was established. For the acoustic field produced by a circular plan transducer with center frequency of 2.25㎒ and 13㎜ in diameter, it was possible to make a fairly accurate field measurement using the hydrophone system. The attenuation coefficients at 2.25 ㎒ for biological tissues were 0.7∼1.3 dB/cm(average; 1.0 dB/cm) in bovine liver, 1.0∼1.8 dB/cm (average; 1.6 dB/cm) in pig liver, 0.9∼2,9 dB/cm(average: 2.1 dB/cm) in bovine muscles, 1.7∼3.3 dB/cm (average; 2.5 dB/cm) in pig muscles.

음향특성이 균일하지 않는 생체조직은 특정의 형태 유지가 어렵기 때문에 종래의 극소형 수중청음기의 스캐닝 방법에 의한 초음파 음장 전파특성 측정이 곤란하다. 본 연구에서는 PVDF (Polyvinylidene fluoride) 압전막을 사용하여 2차원 배열 수중청음기를 제작하고, 그것에 의한 음장 측정 시스템을 구축한 후, 생체조직에 적용하였다. 중심주파수 2.25 ㎒이고 직경이 13㎜인 원형평면 트랜스듀서에 의한 실험 결과, 구축한 시스템에 의해 비교적 정밀한 음장 측정이 가능한 것을 알았으며, 그 주파수에 대해 소와 돼지의 간에서는 각각 0.7∼l.3dB/cm (평균; 1.0 dB/cm), 1.0∼l.8 dB/cm (평균; 1.6 dB/cm), 근육에서는 각각 0.9∼2.9 dB/cm (평균; 2.1dB/cm), 1.7∼3.3 dB/cm (평균: 2.5 dB/cm)의 값을 갖는 감쇠계수의 공간적 분포를 측정할 수 있었다.

Keywords

References

  1. J. Acous. Soc. Am. v.56 Sonic Nearfields of a Pulsed Piston Radiator W.L. Beaver
  2. 東京大學 生産技術硏究報告, UDC 534 · 231-141 超音波音場と Lommel 關數 鳥飼安生
  3. J. Acous. Soc. Am. v.74 Numerical Evaluation of the Radiation from Unbaffled, Finite Utlates using FFT E.G. Williams
  4. IEEE Trans. on UFFC v.39 Calculation fo Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers J.A. Jensen;N.B. Svendsen
  5. IEEE Trans. on Son. and Ultrason. v.Su-32 Cross-Sectional Measurements and Extrapolations of Ultrasonic Fields R.C. Wagg;J.A. Cambell;J. Ridder;P.R. Mesdag
  6. J. Acous. Soc. Kor. v.19 no.2E Estimation and Measurement of Forward Propagated Ultrasonic Fields in Layered Fluid Media K. L. Ha;M. J. Kim;B. G. Hyun
  7. J. Acous. Soc. Am. v.64 Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian Tissues S.A. Goss;R.L. Johnston;F. Dunn
  8. J. Acous. Soc. Am. v.68 Compilation of Empirical Ultrasonic Properties of Mammalian Tissues Ⅱ S.A. Goss;R.L. Johnston;F. Dunn
  9. IEEE Trans. on UFFC v.47 A Two-Dimensional Hydrophone Array Using Piezo-Electric PVDF A. Hurrell;F. Duck
  10. J. Acous. Soc. Am v.85 Tranducer Characterization using the Angular Spectrum Method M.E. Schafer;P.A. Lewin
  11. J. Acous. Soc. Am v.90 New Approaches to the Linear Propagation of Acoustic Fields P.T. Christopher;K.J. Parker
  12. Fundamentals of Acoustic(4th Ed.) L.E. Kinsler;A.R. Frey;A.B. Coppens;J.V. Sanders
  13. Ultrasound in Med. & Biol v.11 Determination of the Nonlinerity Parameter B/A of Biological Media W.K. Low;L.A. Frizzell;F. Dunn
  14. J. Acous. Soc. Am v.74 Ultrasonic Shear Wave Properties of Soft Tissues and Tissuelike materials E.L. Madsen;H.J. Sathoff;J.A. Zagzebski