Suppression of Abnormal Grain Growth in Barium Titanate by Atmosphere Control

  • Lee, Byoung-Ki (Memory Research and Development Division, Hyundai Electronics Industry Co., Ltd.) ;
  • Chung, Sung-Yoon (Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Yang-Il (Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Suk-Joong L. Kang (Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2001.06.01

Abstract

The ferroelectric properties of barium titanate strongly depend on its microstructure, in particular, grain size and distribution. During sintering, $BaTiO_3$ usually exhibits abnormal grain growth, which deteriorates considerably the ferroelectric properties. A typical technique to suppress the abnormal grain growth is the addition of dopants. Dopant addition, however, affects the ferroelectric properties and thus limits the application of $BaTiO_3$. Here, we report a simple but novel technique to prevent the abnormal grain growth of $BaTiO_3$ and to overcome the limitation of dopant use. The technique consists of stepwise sintering in a reducing atmosphere and in an oxidizing atmosphere. The materials prepared by the present technique exhibit uniform grain size and high dielectric properties. The technique should provide opportunities of having $BaTiO_3$-based materials with superior ferroelectric properties.

Keywords

References

  1. Advances in Ceramics v.7 H.Ihrig;M.F.Yan(ed.);A.H.Heuer(ed.)
  2. Advances in Ceramics v.1 G.Goodman;L.M.Levinson(ed.)
  3. J. Am. Ceram. Soc. v.72 A.R.Selcuker;M.A.Johnson
  4. J. Am. Ceram. Soc. v.68 G.V.Lewis;C.R.A.Catlow;R.E.W.Casselton
  5. J. Appl. Phys. v.47 K.Kinoshita;A.Yamaji
  6. Br. Ceram. Proc. v.36 A.J.Bell;A.J.Moulson
  7. J. Appl. Phys. v.58 G.Arlt;D.F.K.Hennings;G.DeWith
  8. J. Am. Ceram. Soc. v.46 J.B.MacChesney;P.K.Gallagher;F.V.DiMarcello
  9. J. Am. Ceram. Soc. v.54 M.Kahn
  10. J. Am. Ceram. Soc. v.60 A.Yamaji;Y.Enomoto;K.Kinoshita;T.Murakami
  11. J. Am. Ceram. Soc. v.72 T.R.Armstrong;L.E.Morgens;A.K.Maurice;R.C.Buchanan
  12. J. Mater. Res. v.5 C.J.Peng;Y.M.Chiang
  13. Br. Ceram. Trans. v.94 T.Yamamoto
  14. J. Am. Ceram. Soc. v.70 D.F.K.Hennings;R.Janssen;P.J.L.Reynen
  15. J. Am. Ceram. Soc. v.54 Y.Matsuo;H.Sasaki
  16. Ceramic Transactions v.1B R.J.Brook;W.H.Tuan;L.A.Xue;G.L.Messing(ed.);E.R.Fuller(ed.);H.Hausner(ed.)
  17. Acta Mater. v.48 B.K.Lee;S.Y.Chung;S.J.L.Kang
  18. J. Am. Ceram. Soc. v.83 B.K.Lee;S.Y.Chung;S.J.L.Kang
  19. Acta Mater. v.49 B.K.Lee;S.J.L.Kang
  20. J. Am. Ceram. Soc. v.66 H.Oppolzer;H.Schmelz
  21. Phil. Mag. B v.70 A.Recnik;J.Bruley;W.Maser;D.Kolar;M.Ruhle
  22. J. Am. Ceram. Soc. v.74 K.W.Kirby;B.A.Wechsler
  23. High Technology Ceramic, Proceedingd of the World Congress on High Technology Ceramics, 6th International Meeting on Materials and Ceramic Technology U.Bast;P.Vincenzini(ed.)
  24. J. Chem. Phys. v.73 S.Shirasaki;H.Yamamura;H.Haneda;K.Kakegawa;J.Moori