가리비, *Patinotopecten yessoensis* 난 발생과 유생의 성장

박영재, 이정용1, 김완기1, 이재성1

국립수산진흥원 서해수산연구소, 1국립수산진흥원 강인수산물요시험장

Egg Development and Larva Growth of the Scallop, *Patinotopecten yessoensis*

Young-Je Park, Jeong-Yong Lee1, Wan-Ki Kim1 and Chae-Sung Lee1

Department of Aquaculture, West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Inchon 400-201, Korea

1Gangneung Marine Hatchery, National Fisheries Research and Development Institute, Gangneung, 210-807, Korea

ABSTRACT

In order to obtain the basic information for seedling production of the scallop, *Patinotopecten yessoensis*, the egg development and larva growth were investigated at different conditions such as water temperature, salinity and phytoplankton. Eggs were demersal isolated eggs, which averaged 77.3 ± 2.7 μm in diameter after spawning. The fertilized eggs developed to D-shaped larva of shell length 117.5 ± 3.8 μm after 60 hours at 15°C. The range of water temperature and salinity during egg development were 10-20°C and 28-34 ppt, respectively. The time of egg development was shorter with higher water temperature. After 10 days of spawning, D-shaped larva reached 160 μm in shell length, and after 25 days became full-grown larva 250 μm in shell length, in which could be observed eye spots. The relative growth formula between shell length (SL) and shell height (SH) was $SH = 1.0425SL - 27.731 \times 10^2 (r^2 = 0.9749)$ during the entire larva period. In regard to water temperature, growth and survival rates of larvae were good at 16°C. Lower growth and survival rates were observed at 12°C and 20°C than that at 16°C. When larvae were fed mixed phytoplankters, such as *Isochrysis galbana, Pavlova lutheri* and *Chaetoceros calitrons*, their growth and survival rates were the highest among groups.

Keywords: Scallop, *Patinotopecten yessoensis*, Egg development, Larva growth.

서 론

Egg Development and Larva Growth of the Scallop, Patinopecten yessoensis

야행성에서 수하양식 사용중인 3년간 어미를 실험수조로 옮겨

Fig. 1. The egg developmental stage of the scallop, Patinopecten yessoensis. A, fertilized egg; B, 1st polar body stage; C, 4-cell stage; D, 8-cell stage; E, morula stage; F, trophophore stage; G, veliger stage; H, early D-shaped larva stage. Scale bar = 100 μm.

Fig. 2. Survival rates of fertilized eggs of the scallop, Patinopecten yessoensis, at various water temperatures.
가리비의 수정관은 난경 77.3 ± 2.7 μm의 분리층면으로서 난핵돌을 확인할 수 있었다 (Fig. 1-A). 수정된 난은 제1 구획의 제2구획를 발출 후 3~5회로 발달하였으며, 수온 15 ± 1°C에서 산란 6시간 후에 4세포기로 발달하였다 (Fig. 1-C). 이후 8세포기를 거쳐 심상기로 발달하여 회전운동을 시작하였다 (Fig. 1-E). 수정 24시간 후에 회전운동으로 부상한 발생 때(16)는 심지가 충분한 난관자 유생기를 거쳐 수정 48시간 후에는 배람이 형성하는 벌리에서 유생기로 변태하였으며, 수정 60시간 후에는 각각 117 ± 3 μm의 D형 유생으로 발달하였다 (Fig. 1-H).

수온에 따른 D형 유생자기의 생존율을 조사한 결과, 5°C에서는 난생명이 확인되지 않았으며, 25°C에서는 D형 유생자가 이르지 못하고 제거하였으나, 10, 15 및 20°C에서는 40% 전후의 개체가 정상 생장하였다. D형 유생자기의 소요시간은 10°C의 경우 60시간이 요구되었으나 20°C에서는 48시간 후에 D형 유생이 관찰되었으며, 수온이 높을수록 난발생 속도가 빨라졌다 (Fig. 2).

염분 34, 31, 28, 25 및 22 ppt의 실험에서 난 발생을 조사한 결과, 28 ppt 이상에서는 40% 이상이 정상 생장하였으나, 25 ppt 이상에서는 난 발생율을 보였다 (Fig. 3).

유생의 발달과정은 Fig. 4와 같다. 각각 117 μm의 D형 유생을 16°C에서 사용한 결과, 수정 10일 후에 각각 160 μm 전후의 각기류유생 (Fig. 4-B)으로, 수정 25일 후에는 각각 250 μm로 성장하여 인격이 관찰되는 성숙유생 (Fig. 4-D)으로 발달하였다. 이후 제료기에는 부작용이 짜릿게 성장하여 수정 45일 후에는 500 μm로 성장하였다 (Fig. 4-F).

유생의 성장과정 중간 각각 (SL)에 대한 각 각(SH)의 성장은 적절적이었으며, 상대 성장식은 $SH = 1.0425SL - 27.731$ ($r^2 = 0.9749$)였다 (Fig. 5).

![Fig. 3. Survival rates of fertilized eggs of the scallop, Patinopecten yessoensis, at various salinities.](image)

수온 8, 12, 16 및 20°C로 유생 사용한 결과, 16°C에서 성장과 생존율은 약화하였으며, 25일 후 각각 250 μm의 성숙유생으로 성장하였다. 반면, 8°C와 12°C에서는 낮은 생존율을 보였으며, 20°C에서는 빠른 성장율을 보였으나 생존율이 낮았다 (Fig. 6).

식물 먹이식물에 따른 유생 사용한 결과는 Fig. 7과 같다. 각각 생장은 환합 곤궁구가 가장 빠른 성장상을 보였으며, 단일 곤궁구에서는 I. galbana와 P. lutheri가 비슷한 성장을 보였으나 C. calcitrans이 가장 높은 성장상을 보였다. 생존율에 있어서도 환합 곤궁구에서 가장 높은 생존율을 보였으며, 단독 곤궁구 사이에서는 큰 차이를 보이지 않았다.

고찰
가리비는 동해안에서 산업화된 양식공종으로 성장과 품질에 있어서 경제적 가치가 우수한 페리이나 최근 자연재료의 감소로 인하여 생산성이 매우 불안정한 실정이다. 인공적인 종묘의 확보로 나타내는 인공종묘가 효과적이다 가리비의 인공 종묘생산을 위한 연구는 무엇시절 전부 약속이 되어 본 연구에서는 수온의 입니다.
Egg Development and Larva Growth of the Scallop, *Patinoplecten yessoensis*

![Graph showing relationship between shell length and shell height](image)

\[SH = 1.0425SL - 27.731 \]
\[r^2 = 0.9749 \]

Fig. 5. Relative growth between shell length and shell height of the larva of the scallop, *Patinoplecten yessoensis*.

![Graphs showing growth and survival rates](image)

Fig. 6. Growth and survival rates of the larva of the scallop, *Patinoplecten yessoensis*, at various water temperatures.

Fig. 7. Growth and survival rates of the larva of the scallop, *Patinoplecten yessoensis*, fed three different or mixed phytoplankters.
조개류의 발달, 성장, 생존은 생태학적으로 수온, 염분 등의 환경요인에 의해 영향을 받으며 (Kinne, 1964), 수온은 가리
비류의 대사율과 생존에 직접적으로 영향을 줄다 (Wallace와 Reinsnes, 1985). 또한 염분은 서식부위를 제한하는 요
인으로, 많은 주의의 가리비가 고염분에 분포한다 (O'Connor과 Heasman, 1998). 따라서 건강한 인공조류의 대상생산
을 위해서는 발생조건의 수온과 염분 등 환경조건을 파악하는 일이 매우 중요하다.

가리비 난 발생에 있어서 소릴 톤 (1968)은 수온은 15-17℃ 범위에서 12시간 후에 심포를 내어 신선물을 시작하여 16
시간 후에 닭분자로 부상하고 60 시간 경과 후 초기 D형 유생
으로 성장한다고 하였다. 또한 젤런 같은 논문은 수온은 12-16℃ 범위에서 약 20 시간 후에 닭분수 이상이 수면에 부상하고 40
시간 경과 후 거의 모든 개체가 D형 유생이 되었다고보고하
였으며, 소프리와 (1969)는 수온은 11-15℃ 범위에서 약
90 시간 후에 D형 유생으로 수면을 보인다. 그러나 이에
는 수온 8.5-14.2℃ 범위에서 5일 정도 경과 후 D형 유생이
생성되기 시작하다고 보고하였다.

한편 본 연구에서는 수온 수심 내 수온이 평균 15.5℃에서 3
일 후 D형 유생이 발생하였으며, 소릴 톤 (1968)의 연구결과와 거의 일치하고 있다. 그러나 이 연구결과의 차이는 주로 수온에 따른 차이로 판단되며, 동일수온대의 차
이는 수온에 의해 다른 사육환경에서 기인한 것으로 생각된다.

수온에 따른 난발생을 조사한 결과, 가리비는 10-20℃ 범위내에
서는 D형 유생까지 정상 발생이 가능하였으며, 수온이 높은수
온의 D형 유생까지의 소요시간이 짧았다. 이는 수온상승에 따
라 생장속도 및 생식능력 대사 속도가 빨라진다고 하는 Q10
의 일반적 범위는 적용되지 않는다. 그러나 본 연구의 염분비례
부화율이 40% 전후로 낮게 나타나, 직수온에 따른복발해의
80% (Lee. et al., 1996), 가리비류의 74% (Lee. and Rho,
1997)와는 차이를 보였으며, Kang. et al. (1996)은 정자현
탁Factor을 정자현에 얻어 가려비의 수생면에서 86.7%의 부화
율을 보인다고 보고한다. 이는의복발해와 가리비류의 복발
요법은 근본적으로 차이를 보였다. 또한 Kang. et al.
(1996)이 정자현에서 정자가 자극으로 얻어 가려비 알을 사
용하여 낮은 부화율을 관찰하겠으나 본 연구에는 수온공격에
대한 변란된 알을 사용함으로써, 변란변과 난절에 따라 부
화율이 차이나 나타난 것으로 판단된다.

염분에 따른 부화율은 28 ppt 이상에서는 염분변화에 따라
차이를 보이지 않았으나 25 ppt 이하에서는 낮은 값을 보였으
다. 이는 25-34ppt의 염분변화서 50% 이상의 부화율을 보
인 복발해 (Lee. et al., 1996) 보다는 염분에 민감한 것으로,
특히 염분에서 약한 내성을 보인으로서 가리비가 고염분에
분포한다는 보고 (O'Connor와 Heasman, 1998)와도 관
련이 있는 것으로 판단된다.

조개류 유생기의 성장에 미치는 중요한 요인으로 수온, 염
게, 생육밀도 및 조도 등을 들 수 있으며, 그 중에서도 수온
은 성장을 지배하는 가장 중요한 요인으로 수온에 따라 먹이생
물의 실취량이 달라진다. (Loosanoff와 Davis, 1963). 또
한, 일반적으로 낮은 수온에서는 성장과 발달이 느리게, 높은
수온에서는 개체수가 증가한다고 한다 (O'Connor과 Heasman,
1998). 본 연구에서는 8-20℃ 범위내에서 유생시각치가 가능하
는데, 20℃에서는 빠른 성장과 낮은 생존율을 보인 반면 1
℃에서는 높은 생존율을 보인 성장을 보였다.

조개류의 인공 종자생산을 위해서는 식물, 먹이생물의 확보
가 중요하며 (Epifanio, 1979), 조개류의 먹이로는 Chaetoceros calcitrans, Pavlova lutheri 및 Isochrysis galbana가 많이 이용되고 있다 (Marty et al., 1992). 참호,
Crasseostrea gigas 및 C. rhizophorae 같은는 I. galbana가
먹이로 사용했을 경우 얕은 결과를 얻었으며 (Helm와
Laing, 1987), Enright et al. (1986)도 조개류 유생시식
P. lutheri 및 I. galbana는 초기이식에 매우 정상적이고 보
고하였다. 본 연구에서도 단일 공급구에서는 I. galbana와 P.
lutheri가 비슷한 성장을 보였으며, C. calcitrans는 가장 높
은 성장을 보였다. 그러나 혼합 공급구가 가장 빠른 성장을 보
임으로서, 혼합용보다는 혼합여부는 공급하는 것이 성장과 생존
에 효과적인 것으로 판단된다.
REFERENCES

木下氏一郎．（1934） ホタテ貝の産卵と濃度の関係．北海道例報， 233: 311-316
山本隆太郎．（1964） 陸域におけるホタテガイ増殖．日本水産資源保護協会，水産増殖編集委員 6: 1-43．
森 輝義，長内雄治，佐藤隆平．（1977）岩手県向 Hebuneにおける養殖 ホタテガイ生産の周年変化に関する組織学的研究． 日本誌 43: 1-8．
小川弘，横山幸雄，佐藤 支，伊藤 涛．（1968）ホタテガイの稚苗生産．人工繁殖，青森県水産増殖 専門職概要第1版，145-155．
張栄源．（1986）外海飼育ホタテガイに関する生理生態学的研究，特に生殖器官の細胞組織の構造的観察について．東北大学大学院 博士学位論文，218 pp.
郁政憲，（2000）養殖効率．水産増殖，639 pp．