Electrochemical Behavior and Differential Pulse Polarographic Determination of Rifampicin in the Pharmaceutical Preparations

  • 발행 : 2001.04.01

초록

Differential pulse polarographic(DPP) analytical procedure for the rifampicin antibiotic, which can be applied to monitor its synthetic process from the starting antibiotic of rifamycin B or rifamycin SV has been developed based on the electrochemical reduction of an azomethine group. Rifampicin exhibited a cathodic peak due to the azomethine group in the side chain of 3-[(4-methyl-1-piperazinyl)imino]methyl moiety and another cathodic peak due to the carbonyl group in rifamycin SV by DPP. The experimental peak potential shift of an azomethine reduction was -73 mV/pH in the pH range between 3.0 and 7.5, agreeing with involvement of 4 e-and 5 $H^5$ in its reduction. By the cyclic voltammetric(CV) studies, the azomethine and the carbonyl reductions in rifampicin were processed irreversibly on the mercury electrode. The plot of peak currents vs. concentrations of rifampicin ranging $1.0{\times}10^{-7} M~$1.0{\times}10^{-5} M yielded a straight line with a correlation coefficient of 0.9996. The detection limit was $1.0{\times}10^{-8} M with a modulation amplitude of 50 mV DPP has been successfully applied for the determination of rifampicin in the pharmaceutical preparations.

키워드