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ABSTRACT

In this paper, fuzzy-ARTMAP equalizer is developed mainly for overcoming the obstacles, such as

complexity and long training, in implementing the previously developed neural-basis equalizers. The
proposed fuzzy ~ARTMAP equalizer is fast and easy to train and includes capabilities not found in other
neural network approaches; a small number of parameters, no requirements for the choice of initial weights,

no risk of getting trapped in local minima, and capability of adding new data without retraining previously
trained data. In simulation studies, binary signals were generated at random from linear channel with
Gaussian noise. The performance of the proposed equalizer is compared with other neural net basis
equalizers, such as MLP and RBF equalizers. The fuzzy ARTMAP equalizer combines relatively simple
structure and fast processing speed; it gives accurate results for nonlinear problems that cannot be solved

with a linear equalizer.
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1. Introduction

In digital communication systems, data symbols
are transmitted at regular intervals, but time dis-
persion caused by the non ideal channel frequency
response characteristics, or by multipath trans-
mission, may create intersymbol interference(ISD).

To deal with ISI, many researchers have been con-
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cerned with applying neural networks, such as
multilayer perceptron(MLP) and radial basis fun-
ctions(RBF), to equalizers [1-6]. The basis idea of
applying neural network to equalization comes
from the fact that channel equalizer problems can
be regarded as patterns classification(detection).
Previous studies have shown that neural networks
based equalizers are superior to a linear equalizer
in handling the situation where the channe! suffers
from high levels of additive noise and highly



334 EIDICIOIE =2X F42 M4Z(2001. 8)

nonlinear distortion. However, each of these net-
works internally has significant shortcomings.
MLP equalizers typically require long training and
are sensitive to the initial choice of network par—
ameters(specially initial weights). Also, RBF e-
qualizers is simple and fast to train, but usually
require a large number of centers, which increases
the complexity of computation.

In contrast, the adaptive resonance theory (ART)
neural network provides the desirable charac-
teristics of fast training and user control of net-
work complexity[7-9]. Predictive ART networks,
such as the fuzzy adaptive resonance theory map-
ping(ARTMAP) used in this paper, increase the
network architecture(number of clusters) to the
minimum level necessary for perfect performance
on the training data[10-12].By selecting the desired
level for the vigilance parameter, the user has con-
trol over the performance of the network on data
that were not used in training; the network will
recognize input that is not sufficiently similar to
training data as novel.

This paper proposes a fuzzy-ARTMAP basis
equalizer, that is much simple and fast to train, to
deal with ISI. The proposed fuzzy-ARTMAP e~
qualizers provides attractive characteristics that
are not found in previously developed neural-basis
equalizers; a small number of parameters, fast and
easy training, no requirement for the choice of initial
weights, and capability of adding new data without
retraining previous patterns. Section 2 presents a
brief summary of the fuzzy ARTMAP network and
learning mechanism. Section 3 gives the structure
and learning procedure for the fuzzy ARTMAP
equalizer. Experimental results are provided in

Section 4, and Section 5 gives the conclusions.

2. Fuzzy ARTMAP Neural Network

ARTMAPI[10] is a supervised neural network
that learns recognition categories in response to
input vectors. Fuzzy ARTMAPI[11], a gener-

alization of ARTMAP, accepts input vectors with
components in the range [0,1]. ARTMAP networks
(either the original or fuzzy form) consist of two
ART modules, connected by a mapfield. The ART
modules serve to cluster the input and target
vectors, subject to the user specified vigilance; the
mapfield provides the predictive link between the
input and output modules. A schematic diagram of
a fuzzy ARTMAP network is shown in Fig. 1.
During training, the network can adjust (in-
crease) the user specified vigilance, if necessary,
so that the training input-output pairs are learned
perfectly. After training, an input pattern that is
sufficiently similar to a training input will produce
the corresponding training output as response.
Input which is not sufficiently similar will be rec-
ognized as novel, and no prediction of a response
is made. The vigilance value specified by the user
determines the required degree of similarity. De-
tails of the fuzzy ARTMAP network are given in[11].
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Fig. 1. Fuzzy ARTMARP structure diagram

3. Implementation of Fuzzy ARTMAP
Equalizer

In order to train a neural network to serve as

a channel equalizer, it is necessary to generate



appropriate training data. In this study, the net—
work is trained to reconstruct the original signal
(1 or -1) based on the signal received after
transmission over a dispersive channel, as shown
in Fig. 2. Therefore, input patterns for the network
consist of received signals and the corresponding
target is the original transmitted signal. The
channel is characterized by its transfer function,

which in general has the form

H(Z) = "gh,,z*" , (1)

where p is the channel order. If ¢ denotes the
equalizer order(number of tap delay elements in the

equalizer), then there are M=2"""" different se-
quences
Ak =[ak,uk‘l,...,ak_puq]r (2)

that may be received{where each component is
either 1 or -1). For a specific channel order and
equalizer order, the required number of training
patterns is M.

If pure training patterns were available, they
could be used directly, but if ARTMAP is to be
trained with noisy signals, preprocessing is neces-
sary to prevent the network from learning the
noise. In this study, the action of noisy transmis-

sion path is simulated by adding Gaussian noise

Converting values to [0, 1] |
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Complement Coding: X ={x, x|’

Fig. 2. The structure of Fuzzy ARTMAP equalizer
system

Channel Equalization using Fuzzy-ARTMAP 335

to the received signal after each possible trans-
mission sequence is passed through the transfer
function. The training patterns are generated by
applying the supervised K-means clustering algo-

rithm[2] to remove the Gaussian noise:
Algorithm:{Supervised K-means clustering}

’f(AA = Ai){
counter, = counter; + 1;
_(counter, -~ 1) D +R,

counter,

}

where

D, =[dy,dy,.d, T,
R, =[r st 1

i=12,..M, 3

and A, Ri, and D, are the combination of Ay, the
received signal vectors, and a training pattern,
respectively. As shown in eq.(3), the number of
components in the Ry is g+1. To facilitate the gra-
phical representation of the network input vectors,
the example given below is limited to equalizer
order ¢g+1, so that the input vectors have two
components.

The training patterns which come from the
transfer function (either directly or after the noise
removal) have components that are not in the cor-
rect range for fuzzy ARTMAP. The actual range
depends on the transfer function; however, the
binary sigmoid

1
1+e™ (4

converts the interval [-nn] to [0,1], and thus is
suitable for making the required conversion for any
transfer function. The final input vectors after

converting and complement coding procedures are

X, =[x, x{1,i=12,..M )
where
X, = [xlo,x”,...,xiq], 6)
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X, ={1-x41—x,,..,1- x,.q]’ 7
x P S 7=0,1,....q
1 +exp(-a 'd[/) ’ T . (8

The target value for each generated training
pattern is the correct value for ax-4 for the desired
delay, d. The appropriate value of is determined
by the dominant term in the transfer function. A
target value of 1 is represented by the vector (1,0);
the target value of -1 is given by the vector (0,1).

To generate training patterns for a given
channel input matrix and noisy channel output
vector, it is necessary to estimate the channel

order. This is done using regression analysis [3].

4. Simulation Results

The fuzzy ARTMAP equalizer was applied to
several linear channels with different transfer fun-
ctions. Among the favorable characteristics of this
network is the fact that there are relatively few
network parameters to be determined. The steep-
ness of the sigmoid function( @ in eq. (4)) used to
convert the input patterns into the required interval
(0,1) and the vigilance parameter for the networks
must be set by the user. The network is not par-
ticularly sensitive to the values of either of these
parameters. Sigmoid steepness parameter values in
the range(0.7,1.0) were used. The value of the vig-
ilance influences the number of clusters formed(as
is well known), but ARTMAP networks increase
the vigilance, if required, to ensure that the training
data are learned perfectly. The value of the vigi-
lance has a more pronounced effect on the per-
formance of the network after training, since the
network will reject as unknown any input that is
not sufficiently similar(based on the vigilance
value) to the training patterns.

In Fig. 3, there are 16 patterns that are estimated
from the noisy received signals by using the
supervised K-means clustering.

As shown in Fig. 3, high vigilance results inmore

clusters, and the error rate performance with
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circles : patterns with ax 1=1,
triangles : patterns with ax-1=-1,
" (a) vigilance parameter = 0.7, 2 clusters

(b) vigilance parameter = 0.85, 4 clusters
Fig. 3. Comparison of the number of clusters

high vigilance was better than with low vigilance.
The vigilance value also affects the region which
each cluster will accept when the net is applied
(after training). The cluster will accept all points
that fall within the boundaries shown, and also
points somewhat outside the dotted rectangle
region.

A comparison of the performance of the fuzzy
ARTMAP equalizer to that of a linear equalizer,
and two other neural network equalizers is
illustrated in Fig. 4 for the transfer function

H(Z)=0.5+1.0Z"" (9)

with ¢=1 and d=0. As shown in Fig. 4(a), the non-
linear decision boundaries cannot be achieved by
the linear equalizer. The response regions for the
radial basis function network and the fuzzy ART
MAP equalizer are similar. In MLP equalizer case,
the number of units used in input, hidden, and
output layers were two, eight, and one, respec-
tively. The RBF equalizer uses eight centers which
are estimated from supervised K-means cluster-
ing. For the Fuzzy ARTMAP equalizer, the vigi-
lance, and sigmoid steepness parameters were 0.95,
and 0.6 respectively.

Fig. 5 shows the error rate comparison of linear
and three kinds of neural network equalizers over
two different channel delays that were introduced
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Fig. 4. Comparison of nonlinear decision boundary
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Fig. 5. Error rate comparison

in training. The performance of the fuzzy ART
MAP equalizer is superior to that of both linear and
MLP equalizers, while producing favorable results
as in RBF equalizer. Although the performance of
the RBF equalizer is almost the same as that of
fuzzy ARTMAP equalizer, fuzzy-ARTMAP e-
qualizer is more attractive candidate than RBF
equalizer, considering the cost and efforts required
in neural network implementation. Here, MLP and
RBF equalizers uses eight numbers of hidden units,
or centers, while fuzzy ARTMAP equalizer re-
quires four clusters for linear decision boundary
case, and the training period of the fuzzy ARTMAP
equalizer was approximately one third times that

of other two neural network equalizers.

5. Conclusions

In this paper, a new fuzzy-ARTMAP equalizer
system is developed mainly for solving the pro-
blems of long time of training and complexity,
which are often encountered in previously devel-
oped neural-basis equalizers such as MLP and
RBF equalizers. The fuzzy-ARTMAP equalizer is
fast and easy to train and includes capabilities not
found in other neural network approaches; a small
number of parameters, no requirements for the
choice of initial weights, no risk of getting trapped
in local minima, and capability of adding new data
without retraining previously trained data. Throu-
ghout the simulation studies, it was found that an
fuzzy ARTMAP equalizer performed favorably
better than the MLP equalizer, while requiring rel-
atively smaller computation steps in training. The
main advantage of the proposed fuzzy ARTMAP
is fast training due to the structural simplicity of
fuzzy ARTMAP. The superiority of fuzzy ART
MAP to other neural networks makes the imple-
mentations of fuzzy-ARTMAP equalizer feasible.
As a further research, we are under processing of
applying the fuzzy-ARTMAP to satellite nonlinear
channel.
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