Color recovery of a chromatic digital image based on
estimation of spectral distribution of illumination
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ABSTRACT

In this paper, an illuminant estimation algorithm of a chromatic digital image is proposed. The proposed
illumination estimation method has two phases. .

First, the surface spectral reflectances are recovered. In this case, the surface spectral reflectances
recovered are limited to the maximum highlight region (MHR) which is the most achromatic and highly
bright region of an image after applying intermediate color constancy process using a modified gray world
algorithm. Next, the surface reflectances of the maximum highlight region are estimated using the principal
component analysis method along with a set of given Munsell samples.

Second, the spectral distribution of reflected lights of MHR is selected from the spectral database. That
is, a color difference is compared between the reflected lights of the MHR and the spectral database that
is the set of reflected lights built by the given Munsell samples and a set of illuminants. Then the closest
colors from the spectral database are selected.

Finally, the illuminant of an image can be calculated dividing the average spectral distributions of
reflected lights of MHR by the average surface reflectances of the MHR.

In order to evaluate the proposed algorithm, experiments with artificial and real captured color-biased
scenes were performed and numerical comparison examined. The proposed method was effective in
estimating the spectral distribution of the given illuminants under various illuminants.
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1. Introduction

The human visual system (HVS) is able to as-
sign roughly constant colors to objects under varying
illumination by discounting the illuminants. This
adaptability of the HVS enables the accurate iden-
tification of objects in diverse visual environments.
However, electric cameras have no such adaptation
mechanisms, therefore, captured images can exhibit
substantial differences according to the incidental
light. In order to obtain a similar color appearance
for scenes in an electronic camera, illuminant esti-
mation is required so that the stability of surface
reflectance can be recovered. This illuminant or
surface reflectance decoupling from the reflected
colors of scene is called color constancy.

Color constancy in the HVS has been studied
by many color-researchers, yet this decoupling
process is generally ill-posed problem [1,2]. In the
case of a color constancy approach based on a
linear model [3], given an RGB-format image
including N surfaces, 3N+3 descriptors are re-
quired to decouple an illuminant and surfaces.
However, a trichromatic camera system has just
3N quantum catch data [2].

As a basic theory in conjunction with a unique
recovery for lights and surfaces, D'Zmura and his
colleagues presented a criterion for determining
this unique recovery according to the number of
unknown lights and surfaces parameters based on
linear model of Maloney and Wandell {1,3,12]. How~
ever, multiple images of a scene with different
illuminants are required for exact color recovery.
In order to overcome this mismatch between known
and unknown descriptors of scenes, additional
assumptions have been developed to estimate the
surfaces or illuminants of the scenes.

The basic assumption for surfaces is the gray
world algorithm that the average spectral reflect—-
ance of all the surfaces in the image is gray.
Another assumption for surfaces is the brightest

surface method, which is one of the most simple

and widely used color constancy algorithms. In this
method, the brightest surface of in an image is
assumed as a uniform perfect reflector [3]. As a
result, the scene illuminant can be decoupled
directly.

This paper proposes an effective illuminant es-
timation method combining the brightest surface
method [4] and modified gray world assumption
[5]. In order to calculate the brightest surface from
color-biased images discounting illuminants, a
modified gray world assumption was applied. By
using modified gray world assumption, the influ-
ence of illumination in the input image is partially
eliminated for each channel. Then, the neutralized
image is exploited to obtain the maximum highlight
region (MHR). After choosing the MHR, the sur-
face spectral reflectances of the MHR are calcu-
lated by the principal component analysis [6].

Next, the spectral distributions of reflected lights,
which are the closest ones to the colors of the
corresponding MHR, are then identified from a set
of reflected lights, built by the given set of
illuminants and surface reflectances of the Munsell
samples. Therefore, color-biased images can be
recovered accurately through dividing the spectral
power distribution of the reflected lights by the
surface spectral reflectance of the MHR.

2. LINEAR MODELS

Linear models have been widely used to approx-
imate three components in the color perception of
the HVS. With the use of linear models, illum-
inants, surface reflectances, and the response of
receptors of the HVS can all be represented as

weighted sums of basis functions.
E(A) =) e,E (L) (1
i=1

Where Ei( A) are basis functions used to ap-
proximate the spectral measurements of the illu-
minants, are the illuminant coefficients. Judd collected
the spectral power distributions of 622 samples of
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daylight to generate 1 mean and 4 basis vectors
for the spectral representation of daylight illu-
minants[7].

Due to smoothness of surface spectral reflect-
ances in the visible wavelength range, a variety
of surfaces can be approximated by a fixed set of
basis functions, B A) and surface coefficients, r;

as shown below
R(A) = iR, (A). 2)
j=1

Given an illuminant, E(A) reflected light to a
surface with spectral reflectance of R( A) can be
represented by the linear models as shown below
LAY =Y Y er,E(ADR,(A). 3)

= =l
Finally, the quantum catch data caught by the
human eye can be represented as photoreceptor

responses to reflected lights as shown below

m n

=Y Yera,. k=110 p,a, = [QAEMR (DA (4)
[

Where Ei{ A) and R{ A) are fixed values for input
images. Accordingly, color recovery in a trichro-
matic visual system means decoupling e; and r;
from the quantum catch data, gx. However, color
recovery in a trichromatic visual system has cer-
tain constraints because the number of known
parameters is lower than the number of unknown
parameters. For a surface, the number of known
parameters is 3, yet for an illuminant and surface
reflectance 6 coefficients are still unknown. As a
result, a direct linear solution to identify the illu-
minants or surface reflectances using only three
quantum catch data is impossible.

To overcome this mismatch, various color con-
stancy algorithms have been introduced including
the gray world assumption and the brightest sur-
face method. The former is based on the assumption
that the average spectral reflectance of an image
is gray, and the latter infers that the brightest
surface of an image includes enough information

about the illuminant of a scene. This prior infor-

mation on the surface reflectance or illuminants of
a scene is then used to recover the remaining
illuminants or surface reflectances.

The proposed approach is based on the brightest
surface method. However, the conventional bright-
est surface method cannot recover correctly the
illuminant of a scene that has no white points in
the image, because, the brightest surface method
solves the mismatch on the assumption that white
points can estimate illuminants of a scene. As
mentioned earlier, the current study is based on the
assumption that the brightest region of an image
includes sufficient information on the illuminants
of a scene. However, we consider that the brightest
region in real image cannot be assumed as a
uniform reflector. Therefore, our approach can be
applied to images without white patches.

In our study, we define the MHR region, which
is the maximum highlight region of an image. For
MHR, the reflected light and corresponding surface
reflectances are calculated. Then, the illuminants
of the scene are finally estimated by using the
calculated reflected lights and surface reflectances.

3. ESTIMATION METHOD OF ILLUMI-
NANTS OF SCENES

3.1 Estimation of the surface spectral re-
flectance of MHR

As mentioned before, our approach based on the
assumption that if there is a maximum surface
reflectance, Rmax( A ), the maximum spectral power
distribution of light reflected from surfaces with an
illuminant E(A) will be

L ()= E(A)R,, (1). (5)

If an image is colorful, the maximum value of the
spectral distribution of light reflected from the
maximum surface reflectance can be assumed to
be an estimation of Lmax(A). As a first step, Lmax
(A) is obtained from the image. Thereafter, the

estimation of the illuminant for an input image can
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be calculated using the equation below.
B3y = L) (®)
R (A)

Basically, our assumption for equation (5) and
(6) is same as in the Cheng’s approach [8). Bmax( A)
is very important for obtaining an exact description
of an illuminant, yet in Cheng’s approach, Fmax(A)
is a fixed value deduced from the assumption that
the lights reflected from Rmax( A) have a maximum
tristimulus value, g =(11117. Accordingly, Rmax{ 1)
is calculated using a fixed spectral distribution of
the reflected light with constant weighting vector
and fixed spectral distribution of D65.[8] As a
result, Rmax( ) and the estimated E(A) are not a-
daptive for an image. Plus the estimated E(A) can-
not be optimal for images that do not include ideal
white.

In the proposed method, the Rmax( A) and Fmax
( A) of an image are simultaneously estimated from
the same surface of the image. Therefore, the ap-
plication of the proposed algorithm can extend to
images that do not include ideal white because
Ruax(A) is not required to become a constant
spectral function or uniform spectral function.

As the first approach, to identify the MHR, a
modified version of the gray world assumption
technique of Buchsbaum [9], an intermediate color
constancy approach, is applied to partially eliminate
the influence of illumination before MHR search.

In equation (7), the average lightness value of
each channel indicates the average reflectance at
each channel. In the case of illumination variation,
the average lightness value of each channel will
change.

Hence, normalization using the average of each
channel removes the illumination variation and
Reray, Ggray, and Bgray were utilized as the numer-
ators in equation 7, thereby implying a 128 gray
value. This is based on the assumption that the
average of all the surfaces in an image is that of
a middle-gray. Therefore, after applying equation

7, the average of each channel in an image is

mapped to a middle-gray.

R"""y 0 0
, R _
R ) " G R(, j)
GG, j)|=|0 Gg"’y 0 |GGNH|
B'(i,)) " 5 | B(, J) (7
LO 0 =
Bm

R, = E{RG, )}, G, = E{GG, )}, B, = E{BG, )}
if1Ce, )~ C, G, j) for k,1=R,G,Band k 1|>10

Where are the color vectors, which have R, G, and
B components. When the channel means are
calculated for each channel of images, gray colors
or dark colors are omitted to avoid saturation of
image due to small magnitude of averages in the
normalization process. After scaling using the
modified gray world assumption, the chromatic
images are transformed into YG, G- color space to
find MHR as shown below

Y =0.299R +0.587G +0.114B’ ,
C,=0577(B -Y) 8
C, =0.730(R -Y).
Then, the MHR is determined by selecting the
minimum chromatic points in an image. In equatjon

(9), the local chromatic component, C(i, j), is the
linear sum of Gy and C; in a 7X7 block.

if Y(i, j) > Threshold
CG, ) =3 Y C, i, ) +C, G, 5)

i=l j=l

)

The 7%X7 block size was empirically deter—
mined to avoid the selection of impulse noise
points in the MHR search. In addition, in order to
select bright points, the range of minimum
chromatic points is limited to a region where the
luminance channel, Y is higher than 90% of that
of the input image.

After determining the MHR, the pixels of the
cevntral 3X3 block in the selected region are
converted into XYZ values in order to apply the

principal component analysis method as follows.
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X 0.588 0.179 0.183 | R
Y |={0290 0606 0.105(G (1
A 0.000 0.068 1.021 | B

In order to produce principal components (basis
functions) of surface reflectance, 1269 chips from
the Munsell Book of Color were exploited. The
Munsell spectra were obtained from the Infor-
mation Technology Dept., Lappeenranta Univ. of
Tech[10). Thereafter, three basis functions of these
spectra were generated by a principal component

analysis.
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Fig. 1. Principal components for 1269 Munselll chips

Fig. 1 illustrates the three principal components
utilized in this study. Using the principal component
vectors, the surface spectral reflectances of the

object can be expressed as a linear combination as

follows
R=zR+ aiui=§+[u,u2u3 a, . (1D
i=1 a]

Where, R is the average of surface reflectances. ui
are the principal components and «; are the cor-
responding coefficients to w. In equation (9), the
9 surface coefficients of the selected 9 pixels, that
is MHR in an image, can be calculated by equation
(12) through (13).

x] [X) [x, x, x; Je,
Yi=z|Y |+|Y, 1, Y |a, (12)
z| |Z]| |z, 2z, Z |«

Where i, Y, and 7 are the tristimulus values

to the averaged spectral of 1269 Munsell samples
and Xi Y, and Z(i=1, 2, 3) are the tristimulus
values for the corresponding principal components.

Accordingly, surface coefficientsare e, (i=1,2,3)

given by
a] [x, X, x, 7' ([x] | X
a, =V, 1, 1, v |-|¥ 13)
a,| |z, 2, Z, Z| |z

3 I

Therefore, the 9 surface reflectances of the MHR
can be estimated using above surface coefficients,
the spectral mean of Munsell, and principal com-
ponents as shown in equation (11). Details of
pricipal component analysis along with estimation

of surface spectral reflectance can be found in [13].

3.2 Determination of spectral power distri-
butions of the reflected lights on MHR

The proposed approach for estimating the illu-
minants of a scene has two phases. First, the sur—
face spectral reflectance of the MHR is estimated.
Next the spectral distribution of the reflected light
of the MHR is determined. In our study, the 1269
samples of Munsell Book of Color and 6 illuminants
(A, C, D65, D50, Green, Yellow) were used to com—
pose the set of reflected lights. Figure 2 shows the
spectral power distributions of the 6 illuminants.

The same 1269 Munsell spectra were utilized for

building the principal components for the surface

Relative spectral power distributions

400 450 500 550 600 650 700
Wavelength(nm)

Fig. 2. Spectral power distributions of the 6 illu-
minants used in constructing the spectral
database of the reflected lights.
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spectral reflectances and constructing the spectra
set of reflected lights. The Munsell spectra were
multiplied by 6 illuminants to generate a set of
spectral power distributions of reflected lights from
400~700 nm at 5-nm intervals. Hereafter, this set
of spectra is referred to as the spectral database.
The colors of the MHR are then compared with
the spectral database to find the closest spectral
data. For a comparison in uniform color space, the
9 colors of the MHR and the spectral data in the
spectral database can be transformed into L*a*b*

vectors as below :

L =116£(v/7,)-16
a’ =s00{F(x/x,)- £(r/¥,)]

b" =200[f(¥/1,)- f(2/Z,)] (14)
173
Fw)= {a) @ > 0.008856
7787w +16/116 @ < 0.008856

Then, the criterion for selecting the best matching

spectra is as follows:

input Image

AE:\/(LMAR =L,V +(@yun — ;) +(bpup b,y (15)

Where, Laar denotes the lightness of a MHR color
in CIELAB color space and L, means the lightness
of a sample of spectral database in CIELAB metric.
Using equation (15), 9 spectral distributions of the
lights reflected from the MHR are selected from
the spectral database. Finally, the selected spectral
data are divided by the corresponding surface
spectral reflectances of the MHR and averaged to
estimate the spectral distribution of the illuminant.
A flowchart of the proposed algorithm is shown
in Fig. 3.

3.3 RECORVERING COLORS

After estimating the spectral power distribution
of the illuminant, the colors of images with chro-
matic illuminants can be recovered by matrix
transformation. There are three distinct classes of

receptors in a trichromatic visual system. Therefore,
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Fig. 3. Flowchart of the proposed algorithm.



Color recovery of a chromatic digital image based on estimation of spectral distribution of illumination 103

the response of a class—-k receptor is:
3
4= Yl [ WEMR, (W], (16)
j=l

If the illuminant of a scene, E( A)is estimated, the
above equation can be expressed in matrix form
X by by by | 1
Y |=1by by by | 1y (17)
Z b3| b32 b33 r3

or
q= Br (18)

where
by = [0, (DEDR,(DdA. (1)

Assume that the column vector of the tristimulus
values of a surface with the original illuminant is
Qorig and the transformation matrix is Beng. From

the above equation,

-1 .

r= Bnrig qorig' (ZO)

Therefore, the recovered image with the CIE stan-
dard illuminant D65 can be calculated by

Qpss = Bpest = (BbﬁsBor'lgil s P (21)

Finally, the neutral image in RGB-format can be
obtained by an inverse transformation of equation

(10) as shown below.

R 1.971 ~0.549 -0297 | X
Gl=1-0954 1936 -0027 Y (22)
B 0.064 -0.129 0982 | Z

4. EXPERIMENT AND DISCUSSION

The proposed method was simulated using ar-
tificial color-biased images and digital camera cap-
tured images under chromatic light sources. First,
to produce artificial color-biased images, the RGB
input images were converted to multi-spectral im-
ages using linear model and principal components.
Here, it was assumed that the scene illuminant of
the original image was D65. Then, piecewise mul-
tiplication with known chromatic illuminants pro-

duced the artificial color-biased images. A, green,
and yellow were utilized as the chromatic illu-
minants. Each chromatic illuminant has 61 samples
and spans 400~-700 nm at 5 nm intervals. 1269 <6
spectra were used as the spectral database. Fig.
4 through 6 illustrate the results of color recovery
and illumination estimation for the artificial color-

biased images.

200 |-

Relative spectral power distributions

0 L L ) s )
400 450 500 550 600 850 700
Wavelength(nm)

(e)

Fig. 4. Recovered images for illuminant A and the

spectral power distribution of estimated
iHuminants.
(a) original image, (b) color-biased image by the
illuminant A, (c) recovered image by Cheng's
maximum- tristimulus value(MTV) method, (d)
recovered image by the proposed method, (e)
estimated illuminants A by Cheng’s method and
proposed method. (dot: original spectral, solid:
estimated spectral)
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Fig. 5. Recovered images for the green illuminant

and the spectral power distribution of es-
timated illuminants.
(a) original image, (b) color-biased image by the
illuminant green, (c) recovered image by Cheng’s
maximum-tristimulus value(MTV) method, (d)
recovered image by the proposed method, (e)
estimated illuminants green by Cheng's method
and by proposed method. (dot: original spectral,
solid: estimated spectral)

As shown figure 4 through 6, the illuminants of
the artificial color-biased images were then esti-
mated using the proposed and Cheng’'s Maximum
Tristimulus Value method. As previously men-—
tioned, in the proposed method, Rmax(A) is more
adpative for input images than Cheng’s method
and does not need to be a constant spectral function
or uniform surface spectral function. Therefore, the

proposed illuminant estimation method is more

Relative spectral power distributions

0 ' L 1
400 450 500 550 600 850 70C
Wavelength(nm)

(e)

Fig. 6. Recovered images for the illuminant yellow

and the spectral power distribution of es-
timated illuminants.
(a) original image, (b) color-biased image by the
illuminant yellow, (c) recovered image by Cheng's
maximum-tristimulus value( MTV) method, (d) re-
covered image by the proposed method, (e) es—
timated illuminants yellow by Cheng’'s method
and by proposed method. (dot: original spectral,
solid: estimated spectral)

effective than Cheng’s method in illuminant esti—
mation and recovered images also illustrate a
better color recovery.

Second, an experiment using real color-biased
images was performed. In order to generate the
real color-biased images, the Macbeth Color-
Checker was captured in Macbeth viewing booth
with changing light sources. A Sony DSC-D700

digital camera was used and its camera—-charac-
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teristic was fixed to avoid any self-compensation
of the scene illuminants. The non-compressed TIFF-
format images were converted into RAW-format
RGB images using the image manipulation pack-
age, Paint Shop Pro 5.0 and then used as the test
images.

TL&4 and Horizon light sources were utilized as
the chromatic light sources in the Mac beth view—
ing booth. Then, the illuminants of the real color-
biased images were estimated using the proposed
method and Cheng’'s MTV method and the images
were recovered into a neutral image under D6b
using the estimated illuminants, respectively. Fi—
nally, two resultant images were compared with
the captured image under D65 as shown in Fig. 7
and 8.

The results confirmed that the proposed method
could effectively estimate the illuminants under
different illumination conditions. However, the illu-
minant estimation for the red-biased image was
incorrect in the long wavelength part. As a result,
this mismatch was analyzed by investigating the

selected spectra in relation to the lights reflected

(a),, I ()

(c) (d)

Fig. 7. Experiment for Macbeth Color-Checker un-
der Horizon in the Macbeth viewing booth.
(a) captured image under D65 in the Macbeth view~
ing booth (b)captured image under Horizon light
source (¢) recovered image by Cheng’s MTV meth—
od (d) recovered image by the proposed method.

@ (b)

(c) B (A

Fig. 8. Experiment for Macbeth Color-Checker un-
der TL84 in the Macbeth viewing booth.
(a) captured image under D65 in the Macbeth view-
ing booth (b)captured image under TL84 light so-
urce (c¢) recovered image hy Cheng’s MTV meth-
od (d) recovered image by the proposed method.

from the MHR. In the case of illuminant A, the
selected spectra from the spectral database can
include a few reflected lights, illuminated by dif-
ferent lights. Accordingly, the slope in the long
wavelength part did not follow the curve of the
original illuminant. This phenomenon can be de-
scribed in three ways.

First, the loss of the red signal when capturing
an image can be a reason. An Inc A or Horizon
illuminant has a large spectral power distribution
in the long wavelength part. Therefore, the cap-
tured red signal of an image can exceed the max-
imum gray level. For reproduction on a monitor,
the red signal then should be clipped before saving
the image in the camera. Accordingly, a color-
biased image caused by Inc A or Horizon will
result in lost data in the red channel. As a result,
the estimated illuminants will show little difference
from the known or the real illuminants in a long
wavelength part.

Second, it is a problem related to the dimensional
size of the selected minimum color spectra. Namely,
61 dimensional spectral data were represented as
the 3-dimensional data of CIEL*a*b*. In this proc-
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ess, a substantial amount of information on the
illuminant color can be lost.

Third, the size of the spectral database also
influences the results. A small sample set for
reflected lights can create big color differences
between the colors of the spectral database. There—
fore, if one or two colors, illuminated by different
illuminants, are included in the selected spectra,
this has a significant influence on the curve of the
averaged spectra selected from the spectral data-
base.

In particular, illuminant A is a highly red-biased
curve. Accordingly, the sample space between the
red-colors in the spectral database includes more
void than the sample spaces between other colors.
When several spectra were chosen that were il-
luminated by different illuminants, the error was
greater.

Therefore, to improve the accuracy of illuminant
estimation, a bigger spectral database for reflected
lights is required.

5. CONCLUSIONS

This paper proposed an effective illuminant es-
timation method combining the brightest surface
method and modified gray world assumption. A
modified gray world algorithm was adopted to
calculate the brightest surface from color-biased
images discounting illuminants. The use of the
modified gray world assumption enabled the partial
elimination of the influence of illumination in the
input images for each channel. Thereafter, the neu-
tralized image was exploited to obtain the maxi-
mum highlight region (MHR). After determining
the MHR, the surface spectral reflectances of the
MHR were calculated using a principal component
analysis.

Next, the spectral distributions of the reflected
lights, the closest ones to the colors of the corre-
sponding MHR, were identified from the spectral

database. Then, the color-biased images were re-

covered through dividing the spectral power dis-
tribution of the reflected lights by the surface
spectral reflectance of the MHR. Finally, the esti~
mated spectral power distributions of the scene
illuminants were averaged to generate the illuminant
for the input color-biased image.

Based on the results, the proposed method pro-
duced good estimations for various illuminants.
However, the results of the red-biased image were
less accurate, therefore, further research is required
to consider the saturation of the red channel in
image capture and the size of the spectral database.

An illuminant has a strong influence on de-
termining the color appearance of an object. There-
fore, the estimation of the scene illuminant of an
image in a spectral domain can be applied to a
variety of applications including a color appearance

model.
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