Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry

동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용

  • ;
  • ;
  • ;
  • 增田彰正
  • 이승구 (한국지질자원연구원 환경지질연구부) ;
  • 성낙훈 (한국지질자원연구원 탐사개발연구부) ;
  • 김용제 (한국지질자원연구원 환경지질연구부) ;
  • Published : 2001.12.01

Abstract

Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

동위원소희석법은 스파이크(농축 동위원소)를 사용하여, 질량분석기에서 얻어지는 각 원소들의 동위원소 스펙트럼을 비교함으로써 정량화하는 방법으로서, 현재까지 개발된 정량분석 방법 중 가장 정확한 방법이다. 특히 열이온 질량분석기(Thermal Ion Mass Spectrometer)를 이용한 동위원소희석법은 현재까지 알려진 분석방법 중 가장 신뢰도가 높은 결과(1% 이내의 정도까지 가능함)를 얻을 수가 있다. 동위원소회석법에 의해 정량분석을 하고자 할 때, 가장 중요한 요인중의 하나로서 스파이크(농축 동위원소)의 선택이다. 회토류원소의 복합 스파이크용액을 만들 때의 개개의 회토류원소의 스파이크는 $^{138}$ $La^{142}$ , $Ce^{145}$ /Nd, $^{149}$ /, $Sm^{151}$ , $Sm^{151}$Eu, $^{157}$ Gd, $^{163}$ Dy, $^{167}$ Er, $^{171}$ , $Yb^{176}$ Lu를 많이 쓴다. 이 동위원소희석법에 의한 정량분석이 가장 유용하게 쓰여지고 있는 지구화학적 연구분야는 암석이나 광물의 연대를 측정하고자 할 때의 관심원소의 정량 및 자연계시료의 회토류 원소의 미세구조를 들 수가 있다. 특히 희토류원소의 테트라드 효과를 연구하고자 할 때, 이 동위원소희석법은 아주 효과적인 방법이다.

Keywords

References

  1. 元素の事典 長淵久夫
  2. 東京大學理學博士學位論文 コドライト隕石中の希土類元素の存在度に關する地球化學的硏究 中村昇
  3. Earth Planet. Sci. Lett. v.19 The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences Allegre, C. J.;Ben Othman, D.;Polve, M.;Richard, P.
  4. Contr. Mineral. Petrol. v.123 Controls on the fractionation of isovalent tarce elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and Ianthnide tetrad effect Bau, M.
  5. Spectrochim. Acta v.48B Sources of error in external calibration ICP-MS analysis of geological samples and an improved non-linear drift correction procedure Cheatham, M. M.;Sangrey, W. F.;White, W. M.
  6. Jour. Geophys. Res. v.68 A procedure for geochemical interpretation of terrestrial rare-earth abundances patterns Coryell, C. G.;Chase, J. W.;Winchester, J. W.
  7. Neodymium Isotope Geochemistry DePaolo, D. J.
  8. Nature v.333 Mantle and crustal Ce/Nd isotope systematics Dickin, A. P.
  9. Rare Earth Element Geochemistry: Developments in Geochemistry Henderson, P.(ed.)
  10. Earth Planet. Sci. Lett. v.139 Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions Johannesson K. H.;Stetzenbach, K. J.;Hodge, V. F.;Lyons, W. B.
  11. Geochem. Jour. v.26 Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory Kawabe, I.
  12. Geochem. Jour. v.25 Nonchondritic yttrium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones Kawabe, I.;Kitahara, Y.;Naito, K.
  13. Geochem. Jour. v.32 Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect Kawabe, I.;Toriumi, T.;Ohta, A.;Miura, N.
  14. Ph. D. dissertation Precise determination of holmium and its applications to geochemical studies Kawakami, O.
  15. Chem. Geol. v.114 An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon Lee, S. G.;Masuda, A.;Kim, H. S.
  16. Geochim. Cosmochim, Acta v.63 The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites Irber, W.
  17. the Mineral. Soc. Am. Geochemistry and Mineralogy of Rare Earth Elements: reviews in Mineralogy 21 Lipin, B. R.;McKay(ed.)
  18. Jour. Earth Sci. v.10 Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals Masuda, A.
  19. Geochem. Jour. v.1 Lanthanides in basalts of Japan with three distinct types Masuda, A.
  20. Geochem. Jour. v.2 Lanthanides in the Norton County achondrite Masuda, A.
  21. Geochem. Jour. v.13 Lanthanide tetrad effect observed in marine environment Masuda, A.;Ikeuchi, Y.
  22. Geochim. Cosmochim. Acta v.37 Fine Structure of mutually normalized rare-earth patterns of chondrites Masuda, A.;Nakamura, N.;Tanaka, T.
  23. Proc. Japan Acad. v.71 no.B Quardruple Parabolic Aberration Curves Independently derived from Lanthanides in Samples of Leuco-granitic Gneiss and Seawater Masuda, A.;Shimoda, J.;Matsuda, N.;Lee, S.-G.;Shabani, M. B.
  24. Geochem. Jour. v.21 Lanthanide tetrad effects in nature: two mutually opposite types, W and M Masuda, A.;Kawakami, O.;Dohmoto, Y.;Takenaka, T.
  25. Geochim. Cosmochim Acta. v.58 Rare earth element geochemistry and the tetrad effect McLennan, S. M.
  26. Geochem. Jour. v.32 Y-Ho fractionation and tetrad effect observed in cherts Minami, M.;Masuda, A.;Takahashi, K.;Mamoru, A.;Shimizu, H.
  27. Jour. Inorg. Nucl. Chem. v.31 A tetrad effect in the liquid-liquid extraction ordering of lanthanids(Ⅲ) Peppard, D. F.;Mason, G. W.;Lewey, S.
  28. Anal. Chem. v.62 Determination of Trace Lanthanides and Yttrium in Seawater by Inductively Coupled Plasma Mass Spetrometry after Preconcentration with Solvent Extraction and Back-Extraction Shabani, M. B.;Akagi, T.;Shimizu, H.;Masuda, A.
  29. Anal. Chem. v.63 Sample Introduction by On-Line Two-Stage Solvent Extraction and Back-Extraction to Eliminate Matrix Interference and to Enhance Sensitivity in the Determination of Rare-Earth Elements with Inductively Coupled Plasma Mass Spectrometry Shabani, M. B.;Masuda, A.
  30. Nature v.307 Meteoritic $^{138}Ce/^{142}Ce$ ratio and its evolution Shimizu, H.;Tanaka, T.;Masuda, A.
  31. Mass Spectroscopy v.38 Estimation of light rare earth element patterns in original sources for rocks from their Ce and Nd isotopic ratios Shimizu, H.;Amakawa, H.;Sawatari, H.;Masuda, A.
  32. Nature v.327 Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies Tanaka, T.;Shimizu, H.;Kawata, Y.;Masuda, A.