Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing

TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구

  • 오영민 (한양대학교 공과대학 신소재공학부) ;
  • 정흥식 (한양대학교 공과대학 신소재공학부) ;
  • 김선진 (한양대학교 공과대학 신소재공학부)
  • Published : 2001.06.01

Abstract

The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

냉간가공된 Zr 합금을 $575^{\circ}C$에서 $650^{\circ}C$의 온도범위에서 유지시간을 달리하여 열처리하는 동안에 발생하는 회복 및 재결정 거동을 TEP(ThermoElectric Power)와 미소경도 분석을 통하여 연구하였다. 냉간가공과 열처리에 따른 합금의 회복 및 재결정온 격자결함, 공공, 전위, 적층결함 등이 소멸함에 따라 TEP가 증가하는 거동을 보였다. 이러한 TEP 분석은 미소경도 분석에 비해 재결정의 완료를 정확하게 예측할 수 있었으며, 특히, Zr-0.4Nb-xSn합금에서는 미소경도 분석으로 쉽게 구분하기 어려운 회복 및 재결정 단계를 명확하게 나타내었다. TBP와 미소경도 분석을 이용한 Zr-base합금의 재결정 거동에 따르면, Sn을 첨가하는 경우에 Sn이 치환형 고용체로 존재하기 때문에 이로 인한 응력장과 전위와의 상호작용에 기인하여 회복이 지연되는 현상을 가져왔으며, Nb함량을 증가시키는 경우에는 재결정 지연 효과가 미미하였으나, 석출물 형성에 의한 결정립 성장의 지연효과가 크게 나타났다.

Keywords

References

  1. R.W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 8, 436 (1996)
  2. G. Scheonberger : Information on Westinghouse Materials Programs, (1991)
  3. G. P. Sabol et al. : Zirconium in the Nuclear Industry, eighth International Symposium, 1023(1989)
  4. F. Garazarolli et al. : Zirconium in the Nuclear Industry, ninth International Symposium, 1132 (1990)
  5. T. Isobe et al. : Zirconium in the Nuclear Industry, ninth International Symposium, 5 (1990)
  6. D. Charquet, J.P. Gros and J.F. Wadier
  7. NFIR/EPRI : Nineteenth NFIR Steering Committe Meeting, Sweden, Apr. 18-19, (1991)
  8. P. Mele, C.Vauglin, G. Fantozzi, J.L. Derep and D. Charquet : Zirconium in the Nuclear Industry : Seventh International Symposium, 939, 555 (1987)
  9. D. Benkirat, P. Merle and R. Borrelly : Acta Metall., Vol. 36, No. 3, 613 (1988) https://doi.org/10.1016/0001-6160(88)90094-6
  10. N.J. LUIGGI : Metallurgical and Materials Transactions B, Vol. 28B, 125 (1997) https://doi.org/10.1007/s11663-997-0135-y
  11. J.Y. Jeong et al.: Symposium on Nuclear Materials and Feul 2000, Aug. 24-25, Taejeon, Korea, 665 (2000)
  12. F.J. Blatt, P.A. Schroeder, C.L. Foiles and D. Greig : Thermoelectric Power of Metals, (1976)
  13. T.B. Massalki : Binary Alloy Phase Diagrams, Vol. 3, (ASM, Ohio, 1986) 2788
  14. K.H. Matucha et al. : Materials Science and Technology, (Weinheim, Germany, 1996) 441
  15. T.B. Massalki : Binary Alloy Phase Diagrams, Vol. 3, (ASM, Ohio, 1986) 3416