Effects of ${Er_2}{O_3}$ Addition on the Dielectric Properties of Non-reducible $BaTiO_3$-based X7R Dielectrics

${Er_2}{O_3}$첨가가 $BaTiO_3$계 내환원성 X7R 재질의 유전특성에 미치는 효과

  • Park, Jae-Seong (Department of Materials Engineering, Sungkyunkwan University) ;
  • Hwang, Jin-Hyeon (Department of Materials Engineering, Sungkyunkwan University) ;
  • Han, Yeong-Ho (Department of Materials Engineering, Sungkyunkwan University)
  • 박재성 (성균관대학교 재료공학과) ;
  • 황진현 (성균관대학교 재료공학과) ;
  • 한영호 (성균관대학교 재료공학과)
  • Published : 2001.01.01

Abstract

Effects of $Er_2O_3$ addition on the dielectric properties of non-reducible $BaTi_3$-based X7R dielectrics with Ni electrode have been studied in reducing atmosphere. X7R with moderate temperature-dependence was developed after addition of $Er_2O_3$ with $MnO_2-MgO$; room-temperature dielectric constant and dissipation factor were >2900 and < 1.0%, respectively. The addition of $Er_2O_3$ greater than 3.0 mol% improved the temperature dependence of dielectric properties, but a significant decrease of the dielectric constant at room-temperature was observed. The TCC curves rebated clockwise with increasing MnO$_2$ content at a given additive system, 1.5 mol% $Er_2O_3$ and 2.0 mol% MgO.

Ni 전극을 사용하는 $BaTiO_3$계 내환원성 X7R 조성에서 $Er_2$$O_3$ 첨가가 유전특성에 미치는 영향에 대하여 환원성 분위기에서 연구하였다. $MnO_2-MgO$가 첨가된 내환원조성에서 첨가량이 조절된 $Er_2O_3$의 복합첨가로 유전율의 온도안정성이 향상되어 X7R 규격을 만족시켰으며 2,970 이상의 상온 유전상수와 1.0% 이하의 유전손실율이 관찰되었다. $Er_2O_3$가 3.0 mol% 이상으로 과량 첨가되었을 경우 유전체의 온도특성은 향상되었으나 상온 유전상수가 현저히 감소하였다. 다른 첨가조성(1.5 mol% $Er_2O_3$2.0 mol% MgO)이 고정될 때 TCC곡선은 $MnO_2$첨가량이 증가함에 따라 시계방향으로 회전하였으며, 온도안정성을 향상시켰다.

Keywords

References

  1. H. Saito, H. Chazono, H. Kishi and N.Yamaoka, Jpn. J. Appl. Phys., 30 (9B), 2307 (1991) https://doi.org/10.1143/JJAP.30.2307
  2. Y. Sakabe, Y. Hamaji and T. Nishiyama, Ferroelectrics, 133, 133 (1992)
  3. Y. Okino, H. Shizuno, S. Kusumi, and H. Kishi, Jpn. J. Appl. Phys., 33 5393 (1994) https://doi.org/10.1143/JJAP.33.5393
  4. H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohasato, and T. Okuda, Jpn. J. Appl. Phys., 36, 5954 (1997) https://doi.org/10.1143/JJAP.36.5954
  5. Y. Mizuno, Y. Okino, N. Kohzu, H. Chazono, and H. Kishi, Jpn. J. Appl. Phys., 37, 5227 (1998) https://doi.org/10.1143/JJAP.37.5227
  6. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc., 19, 1043 (1999) https://doi.org/10.1016/S0955-2219(98)00370-7
  7. H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato, and T. Okuda, Jpn. J. Appl. Phys., 38, 5452 (1999) https://doi.org/10.1143/JJAP.38.5452
  8. T. Nakamura, H. Sano, T. Konoike, and K. Tomono, Jpn. J. Appl. Phys., 38, 5457 (1999) https://doi.org/10.1143/JJAP.38.5457
  9. B.S. Rawal, M.Kahn, and W.R. Bussem, Advances in Ceramics, Vol. 1, pp. 172-188, edited by L.M. Levinson, the American Ceramic Society, USA, (1981)
  10. D.F.K. Hennings and B.S. Schreinemacher, J. Eur. Ceram. Soc., 14, 463 (1994) https://doi.org/10.1016/0955-2219(94)90085-X
  11. K. Takada, E. Chang, and D. M. Smyth, Advances in Ceramics, Vol. 19, pp. 147-152, edited by I. B. Blum, and W. R. Cannon, the American Ceramic Society, USA, (1987)
  12. K. Takada, H. Ichimura, and D.M. Smyth, Jpn. J. Appl. Phys., Supplement 26-2, 42 (1987)
  13. L.A. Xue, Y. Chen, and R.J. Brook, Mater. Sci. Eng., B1, 193 (1988) https://doi.org/10.1016/0921-5107(88)90019-0
  14. G.V. Lewis and C.R.A. Catlow, J. Phys. Chem. Solids, 47(1), 89 (1986) https://doi.org/10.1016/0022-3697(86)90182-4
  15. J. Chen, A. Gorton, H. M. Chan, and M. P. Harmer, J. Am. Caram. Soc., 69(12), c-303 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07396.x
  16. J.R. Belsick, A. Halliyal, U. Kumar, and R.E. Newnham, Am. Ceram. Soc. Bull., 66, 664 (1987)
  17. I. Burn., Electro.Sci. Tech., 2, 241 (1976)
  18. S. Osawa, A. Furuzawa, and N. Fujikawa, J. Am. Ceram. Soc., 76(5), 1191 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03739.x