Abstract
In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR value from the observation data. The correlation between original RMR vague and inferred RM $R_{_FU}$ and RM $R_{_NF}$ values from fuzzy set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and infected RM $R_{_FU}$ and RM $R_{_NF}$ value is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mats classification is proved to be sufficiently high enough. enough.
터널의 설계에는 지반조사 자료의 부정확성과 평가의 애매성 그리고 자료수집 과정의 오류(observer error)등이 내재되어 있다. 그러므로 터널의 안정성과 경제적인 시공을 위해서는 시공 중 막장면의 조사가 매우 중요한 역할을 한다. 본 연구는 막장면 조사 시 지반의 고유 특성을 보다 정확하게 평가하고, 조사자의 주관성을 최소화시키기 위하여 수행되었다. 이러한 목적을 위하여 막장관찰 자료로부터 RMR값을 추론하고자 인공지능기법 중 퍼지집합이론과 뉴로-퍼지기법을 적용하였고, 46개의 학습자료에 대해 원래의 RMR값과 퍼지이론 및 뉴로저지기법의 추론에 의한 RM $R_{_FU}$ 및 RM $R_{_NF}$값의 상관성을 분석하였다. 본 연구의 결과는 원래의 RMR값과 퍼지추론에 의한 RM $R_{_FU}$값 및 뉴로-퍼지기법에 의한 RM $R_{_NF}$값의 상관계수가 각각 |R|= 0.96과 |R|=0.95로 상관성이 우수한 것으로 조사되었다. 이 결과로부터 암반평가를 위한 퍼지집합이론 및 뉴로-피지기법의 적용성이 충분함을 검증할 수 있었다.할 수 있었다.