Regulation Mechanism of Redox Reaction in Rubredoxin

  • Tongpil Min (School of Molecular Biosciences, Washington State University) ;
  • Marly K. Eidsness (Department of Chemistry and BioXpress Laboratory, University of Georgia) ;
  • Toshiko Ichiye (School of Molecular Biosciences, Washington State University) ;
  • Kang, Chul-Hee (School of Molecular Biosciences, Washington State University)
  • Published : 2001.09.01

Abstract

The electron transfer reaction is one of the most essential processes of life. Not only does it provide the means of transforming solar and chemical energy into a utilizable form for all living organisms, it also extends into a range of metabolic processes that support the life of a cell. Thus, it is of great interest to understand the physical basis of the rates and reduction potentials of these reactions. To identify the major determinants of reduction potentials in redox proteins, we have chosen the simplest electron transfer protein, rubredoxin, a small (52-54 residue) iron-sulfur protein family, widely distributed in bacteria and archaea. Rubredoxins can be grouped into two classes based on the correlation of their reduction potentials with the identity of residue 44; those with Ala44 (ex: Pyrococcus furiosus) have reduction potentials that are ∼50 mV higher than those with Va144 (ex: Clostridium pasteurianum). Based on the crystal structures of rubredoxins from C. pasteurianum and P. furiosus, we propose the identity of residue 44 alone determines the reduction potential by the orientation of the electric dipole moment of the peptide bond between 43 and 44. Based on 1.5 $\AA$ resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins from C. pasteurianum, the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated.

Keywords

References

  1. J.Mol.Biol. v.217 Structure of rubredoxin from Desulfovibrio vulgaris at 1.5 A resolution Adam E.T;L.C.Sieker;L.H.Jensen
  2. Science v.277 Iron-sulfur clusters: nature's modular,multipurpose structures Beinert H.;R.H.Holm;E.Munck
  3. Cell.Mol.Life.Sci. v.55 Nitrosative and oxidative modulation of iron regulatory proteins Bouton C
  4. Adv.Inorg.Chem. v.38 Iron-sulfur cluster in enzymes: Themes and variations Cammack R.
  5. J.Biol.Chem. v.249 Comparison of oxidation-reduction site geometries in oxidized and reduced Chromatium high potential iron protein Carter C.W.;J.Kraut Jr.;S.R.Freer;R.A.Alden
  6. J.Biol.Chem. v.249 X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus Day M.W;B.T.Hsu;T.L.Joshua;J.B.Park;Z.H.Zhou;M.W.Adams;D.C.Rees
  7. J.Mol.Biol. v.212 Rubredoxin frductase of Pseudomonas oleovorans.Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints Eggink G.;H.Engel;G.Vriend;P.Terpstra;B.Witholt.
  8. Biochemistry v.38 Modulation of the redox potential of the Fe(SCys)₄site in rubredoxin by the orientation of a peptide dipole Eidsness M.K;A.E.Burden;K.A.Rchie;D.M.Kurtz Jr.;R.A.Scott;E.T.Smith;T.Ichiye;B.Beard;T.Min;C.Kang
  9. Curr.Op.Struc.Biol. v.3 Electron transfer in proteins Farid R.S.;C.C.Moser;P.L.Dutton
  10. J.Biol.Chem. v.272 Studies on the redox centers of the terminal oxidase from Desulfovibriogigas and evidence for its interaction with rubredoxin Gomes C.M.;G.Silva;S.Oliveira;J.LeGall;M.Y.Liu;A.V.Xavier;C.Rodrigues-Pousada;M.Teixeira
  11. Electron transfer Gray H.B;W.R.Ellis Jr;I.Bertini(et al)(ed)
  12. Ann.Rev.Biochem. v.65 Electron transfer in proteins Gray H.B;J.R.Winkler
  13. Science v.286 Anaerobic Microbes: Oxygen detoxification without superoxide dismutase Jenney F.E.;M.F.J.M Verhagen;M.W.W.Adams
  14. Curr.Opin.Chem.Biol. v.2 Iron-sulfur proteins: new roles for old clusters Johnson M.K
  15. Biochemistry v.36 Site-Directed Mutagenesis of Rubredoxin Reveals the Molecular Basis of Its Electron Transfer Properties Kummerle R.;H.Zhuang-Jackson;J.Gaillard;J.M.Moulis
  16. J.Am.Chem.Soc. v.99 Synthetic analogues of the active sites of iron-sulfur proteins 14. Synthesis,properties,and structures of bis (o-xylyl-a,a'-dithiolato) ferrate(Ⅱ,Ⅲ) anions,analogues of oxidized and reduced rubredoxin sites Lane R.W.;J.A.Ibers;R.B.Frankel;G.C.Papaefthymiou;R.H.Holm
  17. Biochim.Biophys.Acta. v.811 Electron transfers in chemistry and biology Marcus R.A.;N.Sutin
  18. Protein Sci. v.10 Mechanism of the oxidation and reduction reaction in rubredoxin Min T.C.;Ergenacan M.Eidness;T.Ichiye;C.Kang
  19. Nature v.355 Nature of biological electron transfer Moser C.C.;J.M.Keske;K.Warncke;R.S.Farid;P.L.Dutton
  20. J.Am.Chem.Soc. v.197 Models for ferodoxins: Electronic structures of iron-sulfur clusters with one,two and four iron atoms Noodleman L.;J.G.Norman Jr;J.H.Osborne;A.Aizman;D.A.Case
  21. Biochem.Biophys.Res.Commun. v.195 Aerobic metabolism of carbon reserves by the obligate anaerobe Desulfovibrio gigas Santos H.;P.Fareleira;A.V.Xavier;L.Chen;M.Y.Liu;J.LeGall
  22. J.Biochem.(Tokyo) v.103 Rubredoxin as an intermediary electron carrier for nitrate reduction by NAD(P)H in Clostridium perfringens Seki S.;A.Ikeda;M.Ishimoto
  23. J.Biochem.(Tokyo) v.106 Rubredoxin from Clostridium perfringens: Complete amino acid sequence and participation in nitrate reduction Seki Y.;S.Seki;M.Satch;A.Ikeda;M.Ishimoto
  24. Biophys.J. v.71 Structural origins of redox potential in iron-sulfur proteins: Electrostatic potentials of crystal structures Swartz P.D.;B.W.Beck;T.Ichiye
  25. Biochemistry v.35 Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: a molecular dynamics study Swartz P.D;T.Ichiye
  26. Proteins v.22 Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions Yelle R.B;N.S.Park;T.Ichiye