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ABSTRACT

Safety and serviceability of a planar steel frame are assessed. Aftention is turned to the individual main steps in the assessment
procedure, i.e., to the definition of loads, selection of transformation model, determination of the response of the structure to the
loading, and to the definition of the limiting values (considering safety and serviceability of the structure). The potential of the
method using direct Monte Catlo technique as a powerful tool is emphasized.
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1. Introduction

The transition from primitive computational tools to
the application of dramatically growing potential of the
computer technology affects, among others, the devel-
opment of structural reliability assessment concepts. In
the current specifications there are applied methods,
such as Allowable Stress Design and Partial Safety Fac-
tors, which had been introduced in the specifications for
structural design in the “slide rule” era. Such deterministic
and semi-probabilistic methods will not able to compete
with qualitatively new concepts reflecting the advent of the
computer and information technology era. It can be
expected that simplistic reliability assessment tools will
gradually diminish and much more sophisticated con-
cepts will be developed. In order to cross the divide
between the old and new qualitatively completely dif-
ferent concepts, a reengineering of the entire safety,
durability and serviceability assessment procedures
would be inevitable. The new era will require, first of
all, a transition from a deterministic to a probabilistic
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“way of thinking” of designers and all others involved in
structural design.

Several different approaches can be considered in the
development of structural reliability assessment concepts
applicable in designers work in the near future. Some
researchers prefer analytical approach, other experts are
advocating applicability of numerical methods, while
computer oriented specialists claim that simulation tech-
nique using powerful computers is the optimum solution
in this dispute. One of the possible alternatives of sim-
ulation-based reliability assessment concepts, SBRA, is
applied in this paper.

A recently developed concept SBRA is documented in
(Marek, Gustar and Anagnos, 1995). This transparent
and user-friendly method is based on expressing all
input variables by bounded (non-parametric) histo-
grams, on transformation models allowing calculation of
the response of the structure to the loading, on the anal-
ysis of variables and their interaction using direct Monte
Carlo method as a tool, on expressing the reliability by
comparing the calculated probability of failure P, and the
target probability P, contained in specifications, and on
clear “rules of the game” corresponding to the Limit
States method. Following pilot example explains and
illustrates the application of the SBRA concept.
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2. Transformation Models

2.1 Model of the Frame with Leaning Columns

Transformation model serves for determining of stress
and strain response of the frame to external loading.
Rough drawing of given steel frame and its loading are
shown in Fig. 1. Examination of reliability of the structure
supposes loading in the plane of the frame which is
secured against deviation from its plane, and the assump-
tion of elastic behaviour of columns and crossbars.

The solution supposes quasistatic response to imposed
loading and nécessity to respect the influence of defor-
mation of the structure to resulting response in corre-
spondence with the second order theory. The derived
transformation model and its alternatives, which are the
subject of the brief evaluation and comparison with the
model based on FEM, is used in chapter 3 to the prob-
abilistic assessment of structure by SBRA method. For
deriving of the transformation model was used original
method based on the theoretical background which pro-
vides e.g. (Gere and Timoshenko, 1990; Timoshenko,
1971). First the subject of study is model of one leaning
column with one fixed end, then the result is applied in
formation of the model of frame with leaning socketed
columns.

2.2 Column with Fixed End Loaded at Free End in Vertical
and Horizontal Direction

In Fig. 2 is marked out by dashed line the central line of
straight unloaded column. Unloaded column is deviated
from vertical by angle o, imperfection a represents dis-
tance between free end of unloaded column and vertical
going through fixed end. The central line of deformed col-
umn, which is loaded on free end by forces F and H, is
delineate in Fig. 2 by fat full line. Flexural rigidity of col-
umn is EI, where Eis Young’s modulus of elasticity and
is second moment of area about the neutral axes. Length of
the column is /. The subject of calculation is horizontal
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Fig. 1. Loading and scheme of the frame with leaning socketed
colummns. Total number of columns is #, one fixed end have m col-
UImns.
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Fig. 2. Column with fixed end loaded by forces at its free end.
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Fig. 3. Column with fixed end loaded by vertical and horizontal-
forces at its free end. Origin of the coordinate system is in the
place of fixed end, line coordinates are parallel to loading forces.

displacement & of upper (free) end of column. It is obvi-
ous, that the calculation must be carried out with appli-
cation of the second order theory, because it 13 necessary to
respect the influence of displacement on magnitude of
bending moment. As small elastic strain is supposed, it is
possible to use simple form of the flexure equation. Cal-
culation is in the next carried out on the assumption (a)
elastic deformation of structure in the plane of imposed
forces F, H, (b) constant second moment of area along the
whole length of column, and perfectly fixed end of col-
umn. It is possible to perform appurtenant calculation with
use of different coordinate systems. Two different choices
of coordinate system are shown in Fig. 3 and Fig. 4. The
results obtained are discussed in the end of this chapter.

With respect to coordinate system in Fig. 3 there is flex-
ure equation

’” — Mx_)
¥y (x)_+ El (1)

where M(x) is bending moment. For loading shown in
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Fig. 3 we find

M(x) = H(I-x)+ F(a+6-y) (2)
Setting

s F
W =% 3)

and applying the boundary conditions
y(0)=0 )

Y(0) =1ga=9 )

we obtain after integration (1) the equation for deflection of
column

_(H. a H\sin ox
y(x)—(F l+a+5)coswx+(l+p,) >

2+ @+ 8) ©)

Displacement 6 of upper end of column in the direction
of force H (see Fig. 3) is d=y(l)-a. Eq. (6) gives

(e

I'F m1'1)'l @

With respect to coordinate system in Fig. 4 there is flexure
equation

ey = M(x)
Y0 =y (8)
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Fig. 4. Column with fixed end loaded by vertical and horizontal
forces at its free end. Line coordinates are rotated through angle
which is given by deviation of unloaded column from vertical.
Origin of the coordinate system is situated at the free end of col-
umn which is deflected due to loading by forces F, H.
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Bending moment M(x) is

M(x) = (F-cosa—Hsing) - y(x)+ (Fsina— Hcos o) - x

)
Setting
o = F-cosog;Hsina (10)
and applying the boundary conditions
¥(0)=0, (1D
yh=0, (12)

we obtain after integration Eq. (8) the e'qﬁation for deflec-
tion of column

Fsino+ Hcos oc( sin wx )

Fcoso—Hsino\ @- cosl (13)

y(x) =

Displacement 6 of upper end of column in direction
of force H is 6=y(I)-cos . By using Eq. (13) and
rgoe=a’/l (see Fig. 4), we get

a H
_L Fligol .\
5—1_@( P 1) [coso (14)
IF

Comments to the model

(a) The small difference between computational schemes
in compliance with Fig. 3 and Fig. 4 is based on the
fact, that the axis of coordinates in Fig. 4 are slightly
rotated with respect to the preceding by angle ¢ and
that the length of column [ come in the calculation as
the length of inclined column, not as its projection
onto vertical in Fig. 3.

(b) Computational scheme does not comprise displace-
ment of free end of column in direction of y-axis (see
Fig. 3, Fig. 4)-it is small in comparison with dis-
placement in x-axis direction.

(c) As angle ¢ris small, it means a<</, then cosc tends to
unit and sine to zero. If there is boath (a/f)- (H/F)<<]1
and a<<l, Eq. (14) gives the same result as Eq. (7). If
there are not aforementioned conditions satisfied, it
is suitable to use Eq. (10) and Eq. (14) because it pro-
vides more accurate result.

(d) In concrete terms, if o/l=0.1, H/F=1, F=5.10° N,
E=2.1-10° MPa, I=1.89-10~* m#, =6 m, we get dis-
placement ¢ of free end of column
6=1.2194 m—according to Eq. (3), Eq. (7)
0=1.1858 m—according to Eq. (10), Eq. (14)
0=1.1377 m—FEM, software Ansys (100 beam ele-
ments),
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Fig. 5. Scheme of plane structure before loading (dashed line) and
after loading (fat full line). Column marked with number 1 has
fixed end, remaining columns are socketed.

2.3 Leaning Socketed Columns Rested Against one Fixed
Column

2.3.1 Transformation Model of the Frame

The plane structure, scheme of its is shown in Fig. 3,
contains » columns, connected on the top by joints with
(n—-1) crossbars. As transformation model serves to find
stress and strain response of constant flexural rigidity fixed
column to external loading of structure, it is possible to
consider crossbars and leaning socketed columns as unde-
formable. Fat full line in Fig. 5 shows deformed shape of
fixed column (marked with number 1) and positions of
loaded socketed columns and crossbars after loading by
vertical forces F,,F,,...,F, and horizontal forces W, EQ.
Lengths of columns are 1,,1,,...,1,, lengths of crossbars
are not marked out in Fig. 5 since they do not enter the
transformation model (as for changes of lengths as a con-
sequence of ternperature changes are not considered).
Central lines of unloaded columns are marked out by
dashed lines. Geometrical imperfections, such as vertical
deflection, lack of initial straightness, support deviations
and necessary small eccentricities at joints are supposed
to be included in equivalent geometrical imperfections
ay,dy, ..., 4, , marked in Fig. 5. Horizontal displacement of
upper end of fixed column 1 (and consequently displace-
ments of upper ends of remaining columns too) is in Fig. 5
marked as O.

From the arrangement shown in Fig. 5 results, that col-
umn with fixed end have to catch resulting horizontal
force H, which is given by

n a, n Fi

H=W+EQ+ Zl—I_Fﬁ(El—JHS (15)

i=2 i=2

When a 1 <<l (see Fig. 5), we can take with sufficient accu-
racy cos o=1, sin a¢=ay/l;. Using (14) and (10) we
obtain displacement of the upper end of fixed column

al H
LF, (el
5= =L H(%_l)ll’ (16)
1——1:L
ll F]
where
1
2
mz[(F—H?—:)/EIJ . (17)

Within Eq. (17) E is Young’s modulus of elasticity and 7 is
second moment of area about the neutral axis in case of
simple bending of fixed column 1. Displacement &is in Eq.
(16) not only on the left, but also on the right side, because
H and consequently @ depends on 6, see Egs. (15) and (17).
Arbitrarily accurate solution of transcendental Eq. (16) we
can obtain by iterations. The first approximation é to dis-
placement 6 we can determine such, that we neglect terms
in which oceur products a; a;, d-a; . Then from the Eq.
(15) we find that

D= (w+EQ)T (18)

L hL
and after substituting Eq. (18) into Eq. (17) (with @, stand
for @)

1

o, = [(Fl—(W+ WQ)E;]—I EIT (19)

Denoting 9§, instead of d and o, instead of win Eqs. (15)
and (16) arises after substituting Eq. (15) and (18) into Eq.
(16) and after small adaptation first approximation to &

(W+ EQ+Y %Fl)(%— 1)11

=1 e
— 1=
61—

Fl-(W+EQ)‘;—:-(25J(%~1)-zl

LN a,l

(20)

i=

First approximation to magnitude of horizontal force H,
which must catch fixed column we can obtain from Eq. (15):

n n
a; F;
H =W+EQ+ ET;F1+(ZT;]61
i=2 i=2
By substituting H,; into (17) is given more accurate
approximation @, to genuine

o, = KF—HI%)/(EI)f

Arbitrarily accurate solution of Eq. (16) can be gained
after carrying out necessary number N of iterations for
k=1,...,N:

@21)

(22)
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Table 1. Verification of the accuracy of transformation models on structure with one fixed and three leaning socketed columns (see

Fig. 5) by comparison with FEM calculations

Imperfections [mm]

Horizontal displacement [mm], Fig. 5

o @ w " V\[IEIE]Q & & O™ FEM* *
(28) (20) (23) calculation
30 45 15 27 0 40.926 40.926 40.923 40.900
30 45 15 27 25 168.82 168.78 168.76 168.64
30 45 15 27 89 496.23 496.00 495.67 493.11
300 450 150 270 0 409.26 409.26 405.95 408.01
300 450 150 270 25 537.15 536.47 531.27 529.43
300 450 150 270 89 864.56 860.63 848.83 84749
10 15 5 9 0 13.642 13.642 13.642 13.585
10 15 5 9 25 141.54 141.53 141.52 141.42
10 15 5 9 89 468.94 468.87 468.78 464.32
-30 45 15 27 0 15.347 15.347 15.348 15.313
30 45 15 27 25 143.24 143.26 143.29 143.28
=30 45 15 27 89 470.65 470.87 471.17 467.32
30 —45 -15 =27 0 -15.347 -15.347 —15.348 —15.313
~30 —45 -15 =27 25 112.55 112.53 112.52 112.40
30 —45 -15 27 89 439.95 439.76 439.52 435.4]

*8x+ ( Eq. (23)) is such first magnitude of displacement, for which (xn —8k )/ e 10~
**Magnitude of displacement was for selected configurations calculated by FEM, software Ansys. Model of fixed column was created by

100 beam elements.

H,
NG
_ﬂﬂ( ol
ZIFI

(23)

1)'11 s

where for k=1 is H,, @, given by Egs. (21), (22) and for
k=2,3,...,N becomes

: a; : F S
Ho= L IFHW+EQ+ 3 7 6

i=2 i=2

1
a 2
o, = [(F—Hkﬂ/ﬂ}

Bending moment carried by the critical (fixed) section of
column is given by Eq. (9) after substituting x=1,, F=F,,
and on the assumption that, when a;<<l;, then (see
Fig. 4 respectively Fig. 5) cosa=1, sina=a,/1;,y(l;)
= &/cosar= 6. From the mentioned relations we get

(24)

(25)

M) = (FI—H‘%)- 5+ (Fl‘%m)ll 26)
1 1

After neglecting term in which is product a,,8, we

obtain from Eqg. (26) bending moment carried by critical
section of fixed column

Axial force carried by critical section of column is F. If
the first approximation to displacement of upper end of
column is sufficient, it is possible to substitute into (27)
0=4; and H=H, from Egs. (20) and (21). For giving
more precision to & and H we can use Eqgs. (23) and (24).

2.3.2 Alternative Modifications of the Model

Eq. (7) is an alternative relation to Eq. (16). Substituting
Eq. (15) into Eq. (7) we can gain alternative relation to (20):

i a; tgwl
(W+ EQ+Y TiFl](—coll - 1) I
= =1 (28)
F; |(tgwly
Fl—(z Z_J(—coll - 1)11
i=2
where @1is in accordance with (3)
1
w= (F/(ED). 29)
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Relations Eq. (28) and Eq. (29) tend to first approx-
imation to displacement 0 accordingly Eq. (20) and to @,
accordingly Eq. (19). The difference between relations Eq.
(20) and Eq. (28) is given by different simplification sup-
positions used during derivation of equations for the dis-
placement .

2.3.3 Comparison of Analytical Models and the Model

Based on FEM

Numerical results of calculation of the horizontal dis-
placement 6 of upper end of fixed column in Fig, S for load-
ing F;=5-10°N, F,=3-10°N, F;=5-10°N, F,=3-10°N
lengths of columns I, =6m,l,=9m,l;=3m,1,=5.4m,
second moment of area I = 1.89- 10~m* , modulus of elas-
ticity E = 21-10° MPa and selected magnitudes of imper-
fections ay,ay,a;,a4 and horizontal forces W, EQ are
given in Table 1. Results obtained from Eqs. (28), (20),
and by iterations accordingly Eq. (23) should be compared
with ones obtained by FEM and also presented in Table 1.

2.3 Leaning Socketed Columns Rested Against Several
Fixed Columns

2.3.1 Transformation Model of the Frame

Fig. 1 shows the plane structure consist of n columns
altogether, m of them with fixed end numbered 1 to m and
n-m socketed columns. The description in the intro-
duction of paragraph 2.3.1 holds in adequate manner for
structure shown in Fig. 1 too. It is possible to make use of
knowledge gained in paragraph 2.3 for derivation of the
transformation model of the structure in Fig. 1. In the fol-
lowing derivation Eqgs. (15), (7) and (3) are used.

Let us agree upon the following symbolic:

1

2.
0 = (F/EL . j=1,...m (30)
tg(wil.
K,-=i(—f—f—),j=1,..., (1)
R
a8 |7 aps Fe agd P agtd B aps |
W+ EQ
1 Iy
El1 11 "L lS {
3
El, Lz ,ﬁ:‘l Ely
’ |
1 5
i)
3
2

Fig. 6. Loading and scheme of deformed frame structure with
three fixed and two socketed leaning columns. Initial imperfec-
tions are a., @y, s, dg, 45 , displacement of upper ends of columns
due to loading is 6.

A= [W+EQ+ 3 ‘]i"F,.] (32)
i=m+l !
n Fi
B=¥ T (33)
i=m+1

After loading construction the horizontal displacement
of upper ends of columns will be ¢, and H; the borizontal
force, carried by jth fixed column, j=1,...,m. Dis-
placement 6 and forces H; could be calculated by solving
the following system of (m+1) equations:

Kl
5~Hj—l§jl =k, (34)
B-6-Y Hy=-A (35)

j=1
Remark: Indices j in Eq. (34) are not summation indices,
it means that Eq. (34) represents m equations.
In critical section (fixed end) the jth column carries
fixed-end moment

M, = Fa+8)+H, | (36)

axial compressive force F; and shear force H;.
2.4.2 Comparison of Analytical Model and the Model
Based on FEM

Numerical verification of the accuracy of analytical
model which lead to Eqs. (34) and (35) is carried out on
the structure shown in Fig. 6 by comparison with results
obtained by FEM. The matter is particular form of the
structure shown in Fig. 2, when number of fixed col-
umns is m = 3 total number of columns is » = 5. Load-
ing forces are F, =5-10°N, F,=3-10°N F,=9-10°N,

F,=5-10°N, Fs=3- 10°N . Magnitudes of Wa EQ forces

a are given in Table 2. Lengths of columns are /; = 6m,
Iy=9m, l3=6m, ly=3m, l;=5.4m . Calculation is per-
formed with imperfections a, =30mm, a,=45mm.
a3 =30mm, a,=15mm, as=27mm. Second moments
of area of fixed columns are I;=1.49- 107 m*,
L=193-10"m", 1,=3.08-10"m"* Young’s modulus of
elasticity is £=2.1-10° MPa.

In the Table 2 are given calculated magnitudes of dis-
placement & of upper ends of colurmns and calculated mag-
nitudes of horizontal forces H,, H,, H;, which are carried
by fixed columns 1, 2, 3 (see Fig. 6).

2.5 Evaluation of Proposed Transformation Models

On the basis of analysis of results obtained by appli-
cation of transformation models we can make the fol-
lowing conclusion
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Table 2. Verification of the accuracy of transformation model on structure shown in Fig, 6 with three fixed and two leaning socketed
columns. Numerical results obtained by using Eqgs. (34) and (35) and results calculated by FEM are presented

W+EQ Slmum] H,[N] H,[N] H;[N]

[kN] (34) (35) FEM (34) (35) FEM (34) (35) FEM (34) (35) FEM
0 13.128 13.051 1888.5 1866.2 162.89 154.06 4924.1 4877.9
10 23.629 23.504 5399.4 5361.6 1493.2 1478.3 12463 12385
25 39.382 39.177 10666 10603 3488.7 3464.0 23772 23640
89 106.60 106.02 33135 32969 12003 11935 72024 71673
200 223.17 221.72 72105 71773 26769 26620 155710 155000
-10 2.6255 2.6042 -1622.3  -1627.2 ~1167.4 ~1169.5 -2615.2 —2624.6
-25 -13.128  -13.069 -6888.5  —6867.8 -3162.9 -3155.0 13924 -13879
-89 -80.340  —79.950 -29358 -29232 ~11677 ~11628 62176 —-61909
-200 -196.91 -195.80 68328 —-68029 ~26443 26310  -145862  —145220

1. Proposed analytical transformation models, which
serve to calculation of horizontal displacement 6 and
horizontal forces carried by fixed columns of struc-
ture, are sufficiently accurate in a large range of dis-
placements. By reason of this are these models
suitable for using in connection with SBRA method
(Marek, Gustar and Anagnos, 1995; Marek , Gustar,
Teply, Novik and KerSner , 1997) to reliability (that
is safety and serviceability) assessment of plane
frames, scheme of which is in Fig. 1. Proposed ana-
lytical model has in comparison with the model based
on FEM specific advantages. It does not need such
powerfull computer and pertinent FEM software
equipment, which must be capable solve problems
with geometrical nonlinearities. The respouse of
structure to loading is obtained (when analytical
model is used) for one simulation by direct sub-
stituting into formulae (structure with one fixed and
arbitrary number of socketed leaning columns), or in
case of m fixed columns by solving system of m+1
linear equations. With respect to the fact, that number
of simulations (separate steps which differs from each
other by applying random input of loading, imper-
fections, variability of areas,etc.) in dependance upon
solved problem varies from a tens of thousands to
millions, the use of FEM in connection with solved
problem of plane frame is at present too cumbersome.
Analytic solution of this problem is more convenient,
as finite elements can offer no advantage where
closed solution exist.

2. From comparison of numerical results in Table 1
which are obtained by use of (20) and (23) follows,
that in case of large displacements it is possible to

gain more accurate results by iterations using (23),
but the difference is not too significant in most cases,
50 in thurnping majority of technical important cases
procedure based on (23) is not necessary.

3. Probability Assessment of Reliability

3.1 Application of the SBRA Method

The fully probabilistic method SBRA (Marek, Gustar and
Anagnos, 1995) is applied on the structure shown in Fig. 5.
The individual loadings are expressed by their max-imum
values (see numerical values) and corresponding load dura-
tion curves represented by nondimensional his-tograms, see
Table 3. For the corresponding histograms see [2]. Forces
F,,....,F, in vertical direction are given as sums of non-
correlated dead, long-lasting and short-lasting loads. The
force W represents effect of wind. Loading EQ produced by
earthquake depends on magnimde of vertical loading of
imposed structure on the moment of earth-quake, as shown
in Table 3. Properties of three different areas (second mo-
ment of area ] and section mochilus S are correlated), Young’s
modulus of elasticity £ and the yield stress FY for two dif-
ferent steels of fixed column with per-tinent histograms are
given in Table 4. Lengths of columns and extreme mag-
nitudes of mutually independent equivalent geometrical
imperfections with relevant histograms are in Table 3.

3.2 Safety Assessment (carrying capacity limit state)
Load carrying capacity of structure shown in Fig. 5 is in
the next evaluated with respect to spending elastic area
working of section x—x. The load effect Q in the cross-
section x—x of fixed column is expressed by the stress
corresponding to the combination of compressive axial
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Table 3. Loading of the structure

Column Force Loading Symbol* Extreme magnitude [kN] Histogram
dead DF1 100 DEAD 1
1 F, random long-lasting LF1 100 LONG2
random short-lasting SF1 100 SHORT 2
dead DF2 150 DEAD 1
2 F, random long-lasting LF2 200 LONG 2
random short-lasting SF2 150 SHORT 2
dead DF3 150 DEAD 1
3 F, random long-lasting LF3 200 LONG 2
random short-lasting SF3 150 SHORT 2
dead DF4 100 DEAD 1
4 F, random long-lasting LF4 100 LONG 2
random short-lasting SF4 100 SHORT 2
1 w wind WIN 50 WIND 1
1 EQ earthquake EQV 0.02 3F, EARTH
*histograms representing load duration curves
Table 4. Properties of area and material properties of fixed column
Bar cross section
Fixed column 1
HE 300B HE 280B HE 260B
Quantity, designation, units Nominal value Nominal value  Nominal value Variability Histogram
Section area A [mm?] 14900 13100 11800 +49% N-04
Second mom. of area I [mm*] 252 - 108 193 - 108 149 - 108 +8% N1-08
Section modulus S [mm?] 1680 - 103 1380 - 102 1150 - 108 +8% N1-08
Young's modulus E [Nmm~2] 2.1-105 constant = ----
Fe 360, yield stress FY [Nmm™2] 235 e A 36-m
Fe 510, yield stress FY [Nmm-2 ] 3’5 e A572-m

*Material proparties of fixed column are the same for every section.

force and fixed-end moment. The limit of resistance R of
the column 1 is defined by the onset of yielding in the crit-
ical cross-section x—x and the resistance R is expressed by
variable representing the yield stress R = FY by histo-
gram. The safety function, SF = R—Q, is analyzed using
Monte Carlo simulation by M-Star™ computer program,
see (Marek, Gustar and Anagnos, 1995). As the target
probability of failure P, corresponding to the structures of
special importance is P ,=0.000008 (CSN 73 1401; 1998),
the number of simulations is used 1250000=10.(1/P,) for
each of 20 alternatives mentioned in Table 6, where cal-
culated probabilities of failure P are reviwed. The output
from the M-Star™ program (varability of imperfections,
earthquake, cross section of column I-HEB 300, steel
grade Fe360) is shown in Fig. 7.

Table 5. Lengths and imperfections of columns

Lengths of columns Imperfections of columns

Designation Mzgi: 1].1de Designation Vaﬁg?rgity Histogram
I 6000 a +30 Normal 2
I, 9000 a, +45 Normal 2
A 3000 a, *15 Normal 2
L 5400 a, +27 Normal 2

3.3 Serviceability Assessment (serviceability limit state)

Serviceability assessment refers to the lateral displace-
ment limit value §,,,=30 mm of upper ends of columns.
The serviceability function SF=(§,,,—d) is analyzed by
M-Star™ program. The number of iterations is 50000 for
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Table 6. Calculated probabilities of failure P,
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M EQ Cross section of column 1 Steel Grade Carrying capacity limit state  Serviceability limit state
HEB 300 HEB 280 HEB 260 Fe 360 Fe 510 P Reliability level Py, Reliability level

var. yes X X 1.1.10-% standard 11.6- 102 reduced

var. ves X X <1-10¢ elevated

var. yes X X 15-10°3 insufficient 17.1-10-2  insufficient

var. yes % X 54-10° standard

var. yes X X 1.8-102 insufficient 26.6- 102  insufficient

var. yes X X 6.8- 103 insufficient

var. no X X 50.10% elevated 11.3-10-2 - reduced

var. no X X <1-10-°% elevated

Var. no b X 1.4-103 insufficient 16.6- 102  insufficient

var. no X X 2.6-10% standard

var. no X b 1.8-102 insufficient 25.8-102  insufficient

var. no X X 6.6- 10 insufficient

nom.  yes X X 3.0- 10+ standard 12.0-102  reduced

nom.  yes X X <1 -10% elevated

nom. yes X X 2.1-103 insufficient 19.8- 102  insufficient

nom.  yes X X 1.4.10* reduced

nom.  no X X 1.6-10°3 standard 11.8-102  reduced

nom.  no X X <1-10°% elevated

nom. no X X 20-103 insufficient 19.3- 102  insufficient

nom. no X X 1.3-10% reduced

*Imperfections: var.-variable values, nom-nominal (extreme) values, see Table 3.
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Fig. 7. M-Star™ program output, carrying capacity limit state of
sleel structure.

each of 10 alternatives mentioned in Table 6, where cal-
culated probabilities of failure P, are reviwed. The target
probabilities of failure P, for three reliability levels from
the point of view serviceability limit state are in (CSN 73
1401; 1998). The output from the M-Star™ program (vari-
ability of imperfections, earthquake, cross section of col-

= 30-ab=(de

d-ll.-(WF.\..l.) ZHI

FLI=F2/0). 5*!1)+F3/(D SHILH'F‘!/(EI Ly
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Fig. 8. M-Star™ program output, serviceability limit state of steel
structure.

umn 1-HEB 300) is shown in Fig. 8.

4. Summary and Conclusions

The substance of a probabilistic structural reliability
assessment method SBRA (CSN 73 1401; 1998) is
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explained and the strategy of its application is otlined
using safety and serviceability assessments of a planar
steel frame as an example. Special attention is given to the
definition of the transformation mode] serving for deter-
mining the response of the structure to the loading con-
sidering effects of several mutually dependent and several
mutually independent loads, erection imperfections,
effects corresponding to the second order analysis of struc-
tural components including leaning columns. The struc-
tural response to the loading is obtained using two dif-
ferent transformation models. First, the response is cal-
culated using FEM, next an analytical model is developed
and applied. Resulting responses determined according to
these two models are compared. Both results are of very
good agreement. Considering the simulation based reli-
ability assessment SBRA concept, however, the analytical
mode] seems to be in this particular case more convenient
and practical compared to FEM model. The SBRA con-
cept allows for determining the resulting probability of
failure considering interaction of several different vari-
ables affecting the reliability, such as the effect of erection
imperefections and the effect of correlation of some of the
loads (earthquake load is depending on the magnitude of
gravity loads). The applied concept leads to a good under-
standing of the significance of individual variables affect-
ing the resulting probability of failure (see, e.g., (Marek P,
Gustar M, Teply B, Novik D, Ker¥ner Z , 1997).
The safety and the serviceability are obtained by com-
paring the calculated probabilities of failure (Pj.and Prs)
and the target probabilities (Puc and Pas) contained in
specifications (see CSN 73 1401; 1998) Appendix A). The

designer 1s taking active part on the calculation of the reli-
ability. His/her involvement is not limited to interpretation
of factors, equations and black boxes contained in the
specifications, as it is the case in the design according to
the current reliability asessment method based on Partial
Safety Factors.
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