Topology Optimization of a HDD Actuator Arm

  • Published : 2001.12.01

Abstract

A study on the topology optimization of a Hard-Disk-Driver(HDD) actuator arm is presented. The purpose of the present wert is to increase the natural frequency of tole first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of the high speed actuator arm. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, tole smoothly-varying density field is obtained without checker-board patterns incurred. AS a result of 7he study, an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode of the suggested design is subsequently increased over the existing one.

Keywords