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Abstract

We have calculated the tunneling density of states (TDOS) of a metal/d-wave superconductor proximity junction, where
the metal stands for the normal metal, s-wave superconductor, and d-wave superconductor. The tunneling direction is
through the ab-plane of the d-wave superconductor. Because of the sign change in the order parameter experienced in the
multiple Andreev reflection, there appears a finite TDOS at zero bias for d,, geometry, which results in the anomalous zero
bias conductance peak(ZBCP). For d,,.,; geometry, however, no TDOS peak appears at zero bias. We have calculated TDOS
for various crystal orientation of HTSC and compared with the experimental conductance.
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1. Introduction (DOS) at the tunneling interface with very high
resolution (in the sub-meV range). Temperature or

In the case of conventional low-temperature magnetic field dependence of the energy gap can also
superconductors, electron tunneling experiments be obtained from tunneling measurements. When
have provided key proofs of the validity of the BCS the elastic tunneling is the only conducting channel
theory and Eliashberg equation. From the tunneling through an insulating barrier in metal-insulator
experiment, one can obtain the density of states -superconductor, tunneling data display specific

features related to the interaction responsible for the
pairing of electrons in the superconductor such as the
phonon spectra in low-T. superconductors. Thus
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the tunnel junction acts as a spectrometer and
quantitative comparisons can be made between
theories and experiments with a high degree of
accuracy.

Tunneling measurements also played a key role in
understanding the quasiparticle interference effect in
a proximity junction composed of a normal metal
/superconductor or superconductor/superconductor in
an intimate contact with each other. Bound states or
periodic oscillations appear in the tunneling density
of states (TDOS) as a result of the Andreev reflection
at the normal/superconductor interface. Numerous
tunneling experiments have been carried out to probe
the DOS of the high-T, superconductors (HTSC)
[1],[2] on energy scales relevant to the
superconductive energy gap (from a few meV to a
few tens of meV), to look for specific pairing
excitations, and more recently, to test the symmetry
of the order parameter through Josephson
experiments.

Unfortunately, early tunneling measurements on
cuprates, including vacuum tunneling measurements,
showed puzzling and conflicting results among
various research groups. The conductance data
revealed departures from simple BCS predictions; 1)
zero bias conductance is rather high and often shows
even a peak structure, ii) sub-gap conductance is not
flat at low temperature, often linear, and sometimes
displayed anomalous structure, iil) conductance at
high bias is quite asymmetric and frequently showing
a linear bias dependence. As to the high bias
conductance, recent data on Bi2212 samples
displayed flat or slightly decreasing curve. Often,
BTK model calculation is employed to explain these
anomalous conductance behaviors in HTSC. In
BTK model calculation, tunnel junction is assumed
to have a NID structure in the limit of the vanishing
tunneling barrier. Thus BTK model calculation
deals with primarily the reflection and transmission
of the quasiparticle at the intimate contact between N
and S layer rather than the tunneling of the
quasiparticle.  Therefore, BTK model calculation
cannot be applied to the case of a strong tunneling
barrier such as in the vacuum tunneling case.

To elucidate the puzzling conductance behavior in
the proximity junction, we calculated the tunneling
density of states of N/S bilayer when S is a d-wave

superconductor and the tunneling direction is along
ab-plane. Zero-bias conductance peaks and
characteristic DOS peaks are obtained only in
specific junction geometries where a phase change of
7 occurs by the Andreev reflection at the interface.
We compare our results with available experimental
data.

IL. Tunneling Density of States

The smeared tunneling density of states (TDOS)
for a bulk s-wave superconductor in BCS theory is
given by [3]

£ (D
(E-ir) -A(E)

where I represents the quasiparticle’s lifetime effect.
Almost all conventional superconductors show
TDOS given by Eq. (1). For strong coupling
superconductors, one can extract the energy
dependence of gap function A(E) and the energy
dependence of the Eliashberg function o*(E)F(E)
from the tunneling measurement, thereby one can
look for the interaction mechanism in the
superconducting medium.

When a normal metal (N) and a superconductor
(S) are in an intimate electrical contact as in an
experimental geometry of the N/S proximity junction,
an energy gap is induced in the N side and slightly
reduced in S side as a result of Cooper pair diffusion
across the N/S boundary. This phenomenon was
verified by many transport and thermodynamic

N,(E)= N(O)Re|

measurements  including tunneling conductance
measurement, which showed rich variety of
structures. In addition to the Cooper pair diffusion,

periodic conductance peaks commonly known as
Tomasch oscillation and/or McMillan-Rowell
oscillation appear in the experimental geometry of
proximity electron tunneling spectroscopy (PETS), as
in CE-I-N/S or CE-I-S/N. Here CE stands for the
counter-electrode which could be either a normal or
superconducting material. Furthermore, there
appears phonon structures of N and S material
reflected in the variation of the energy gap.

In order to explain the PETS data quantitatively,
one should compute the tunneling density of states of
N/S or S/N bilayer at the tunneling side in contact
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Fig. 1. Schematic representation (a) of the quasiparticle
reflection process involved in N/S proximity junction. An
injected electron-like quasiparticle |k') is Andreev
reflected to |kg) at the N/S interface which is
subsequently reflected to | k™) at the tunneling barrier. 0 is
the injection angle. Four quasiparticle states involved in the

interference in N side (b).

with the insulating barrier. For the conventional SC,
TDOS can be obtained by Green's function method
[4]-[6] which includes the Andreev reflection at the
interface.

But for non s-wave superconductors, the energy
gap experienced by quasiparticles with different
momenta on the Fermi surface can be different in the
magnitude and even the sign depending on the
incident tunneling angle, making it difficult to apply
Green's function approach. Therefore, recent
theoretical approaches are concentrated on methods
which can follow quasiparticle trajectories, such as
Bogoliubov de Gennes equation[7] and quasiclassical
Green's function metﬁod[S]-[lO] which eliminated
irrelevant details varying on the Fermi length scale.

Due to its chemically active surface and short
coherence length, HTSC junctions are not easy to
make and thus it is hard to find a relevant model
system to simulate the experimental data. For this
reason, different geometries such as DID, DND, NID
junctions and N/D contacts are employed as model
systems following BTK model calculation, where D
represents a superconductor with a d-wave
symmetry.

In this paper we will consider CE-I-N/D structure
with a clean N/D interface.. This model simulates
the situation where superconductivity of the d-wave
superconductor is suppressed on the surface due to
the oxygen deficiency, for example, and counter
-electrode is evaporated onto the surface with an
artificial or natural oxide barrier inbetween.

Fig. 1.

Our calculation of TDOS is based on the
Bogoliubov de Gennes equation. Here the
quasiparticle wavefunction for electron-like or
hole-like states is given as

|k,f’ L> = (’:) exp[ik,f’ Lx] @)

in the spinor space. Here u and v represent
electron and hole component of the quasiparticle

state,
1 Q 1 Q 3
U=—=,1t = v=-e=_lp—- &)
GV VT

The quasiparticle momentum &% = kp #+ Qhvp +
i/ly is the momentum corresponding to the
electron-like (+) and hole-like (-) quasiparticle state,

Q=+E*-A?, and Iy the mean free path of the
quasiparticle. Here the subscripts R, L represents
the position of quasiparticle momentum as shown in

Starting with a quasiparticle moving from left (I-N
interface) to the right (N/D interface) inside N (| k')
in Fig. 1), we trace the trajectory of the quasiparticle
as it is reflected (Andreev or specular) from each
interface (| k'r) = k) = k) = [K'D) > [ KR)).
Note here that the group velocity of quasiparticle
states | kr) and |k"[) is negative (moving toward
tunneling barrier). We can sum each quasiparticle
wavefunction as a geometric series. By calculating
interference between the incoming quasiparticle
wavefunction and the quasiparticle wavefunction
moving left at the I-N interface, we can obtain TDOS
at the tunneling barrier.

III. N/S bilayer

For the isotropic conventional superconductor, the
s-wave energy gap A4s has no angle dependence. Let
us define the normal direction of the interface as
x-axis and let I-N interface be at x = -d and N/S
interface at x = 0. Incident angle @ is the angle
between the quasiparticle trajectory and the interface
normal. Incident angle & should have no effect on
the qualitative feature of TDOS, but affect the
amplitude and period of the oscillation in TDOS, for
the effective length of the N layer is different
depending on the incident angle.

For an incoming (moving right) electron-like
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quasiparticle state |k'r), the Andreev-reflected
quasiparticle state at the N/S interface can be
represented as r|k; >. The Andreev reflection

coefficient » obtained from the continuity condition
of the wave function at N/S interface, | k'z> + | K r>
=t| k">, is :
RyAs —RAy Q)
RyRs—AyAs

where Ry s and £y s are defined as

Rys=E+Qusr Qs =,/E2—A2N,s 5)

and ¢ and k’is the transmission coefficient and the
quasiparticle’s momentum in S side.

Successive specular reflection at the I-N interface
inverts the quasiparticle momentum from &7z to k7
with an additional phase change thus making the
quasiparticle wave function as

ré |k; > (6)
where k7, = -kp - $Yhve + i/ly as shown in Fig. 1
and 6, is the phase change of the quasiparticle
necessary for “the continuity condition at the
tunneling barrier (x=-d). Note that the group velocity
of the hole-like state £ is positive.

Quasiparticle wave function counting each
successive reflection at x=0 (Andreev reflection) and
at x=-d (specular reflection) can be represented as an
infinite series

)=

r(E)=

k,‘;>+ rlkg > +rei‘9‘|k;>+

M

P2t

k;) +r2e' @0 k;> doeens

where 6, and 6, are again the additional phase
changes necessary for the continuity of the
wavefunction at I-N interface for hole-like and
electron-like quasiparticles, respectively. One can
easily obtain phase changes
0, +0, = d_, 8)
L\ Y

from the continuity condition of electron-like (6;)
and hole-like (&) quasiparticles at x=-d. As we can
see, each of the first four terms in Eq. (7) is repeated
with the factor r?e'®**) multiplied at each
succession. These terms are summed up to give

1

|ktola1 > = '_W'E'[(lkl: >+rei0. ‘kL >)

1- ®
+(r|ky >+rte” k] >)]
where ¢/ is defined as
- 2d _RQ,
N gy cosf " cosd

V/Z = rZ(E)e—ZreZM, and

Here = 2d was

1, cos

inserted to include the effect of a finite mean free
path of the quasiparticle in the normal layer. Terms
in the first parenthesis represent quasiparticles

“moving to the right, and the second, to the left.

Calculating the interference of the latter with the
injected quasiparticle wave function k'r >atx =-d
and multiplying that with the unperturbed
background DOS of N, we get TDOS at the I-N
interface

2
N, (E)= Re{(iJ[l + 2(A_~/EL"’2T-"’—]} . Qo)
Qy -y

This TDOS obtained from the multiply reflected
quasiparticle wavefunction shows strong and weak
oscillations corresponding to y and y/ terms in the
modification of TDOS as shown in Fig. 2, where d is
the N-layer thickness, / is the mean free path, and R
is the relative thickness of the N-layer defined as
R(meV™")y=3.04-10" xd(nm)/v,(10°cm/sec) . ~ The
TDOS obtained in this work is exactly the same as
that obtained by a Green's function method of

R, =0.12, d =250
----Ra8, =147, Ud=25
------ RA, =292, Vd=10
--=RA, =5.84,

Normalized DOS

Energy (E/A)

Fig. 2. TDOS of an N/S bilayer for several N layer
thickness and mean free path. There appear bound states
inside of the gap energy 4, due to Andreev reflection at the
N/S interface.
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| 0
CE
-0
I N
Fig. 3. Configuration of our model system. & is the

incident angle of the quasiparticle and « is the angle
between d,, order parameter and the interface normal.

Wolfram[4]-[6], thus assuring the validity of this
approach.

1V. N/D bilayer

Now let us consider the case of N side being a
superconductor having s-wave symmetry while the S
overlayer having d-wave symmetry. We assume,
for simplicity, that the magnitude of the N-layer
energy gap is 20 % compared to that of the overlayer
superconductor (4p = J4y). Unlike N/S proximity
junction, the apparent energy gap perceived by the
Andreev reflected quasiparticle is different from that
perceived by the incoming quasiparticle due to the
anisotropy of the energy gap in d-wave
superconductor.

Let a be the angle between d,, order parameter
and the interface normal as shown in Fig. 3. Thus
a=0 and a=m/4 correspond to dy, and doy
symmetries, respectively, of the order parameter in S
layer. Then the gap perceived by [k'z> at the N/D
interface is A,(0)=A,sin2(d-a), while the gap

perceived by k1> is A, (~0)=-A,sin2(6+a) .
This results in different reflection coefficients,

RyA,(0)-RsAy

RNRS "ANAD(G) ’
RyAp(0)-RAy
RyRs-AyAL(-0)

r*(E,6) =

i4dQ, sin* 8
v, coséd

an

r (E-0)=

at the N/D interface for incoming waves [k'z> and
[k™>, respectively.

The resulting TDOS in this case can be expressed
in a way similar to Eq. (10) but with a minor
modification of 1* being replaced by r'r’,

— i 2 A_N + Lign-r 2
NN(E’G)_RG{(QN)[I+1—V/Z ( z re"7 vy )j”

(12)

Here  is defined as

2 = RNAD(e) - RSAN RNAD(—B) "RsAN e—2ye2i¢,, .
RNRS - ANAD(O) RNRS - ANAD(_O)

7

4 T

——Ra,=0.12, /=100
----Ra, =147, ¥d=10

~~~~~~ RA, =292, Vd=4
L =2

Normalized DOS
N

Normalized DOS

Energy(E/A,)

Fig. 4. (a) TDOS of N/d,,.,, bilayer and (b) TDOS of
N/d,, bilayer. TDOS of N/d,, shows a bound state at zero
bias whereas TDOS of N/d,,.,, does not show a bound state
at zero bias.
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This minor modification in the reflection
coefficients r" and r” can produce a significant change
in the TDOS because of the sign change in the

reflection coefficient depending on the incident angle.

For example, in the case of N-layer being normal
(4y=0), Andreev reflection coefficients reduce to

E- QD(Q)jIHZ

r'(E,0) = Sgn(AD('S’))[EJrQ @

r (E,-0)=sgn(A, (_g))]:E - (—9):! ex i4dEsin’ @

E+Q,(-0) v cos@
(13)
with the resulting TDOS
2
N, (E.) = Re{[l +2-¥ 2]} (14)
-y

The position of bound states that can be obtained
from the zero of the denominator /- ¢/ in Eq. (14)
can be different from N/S case due to the sign change
of the reflection coefficient in N/D junction. Figure
4(a) shows TDOS when D is a dy;.,; superconductor
(a=7/4) and Figure 4(b) when D is a d,
superconductor (a=0). As can be seen in Figure
4(a) for dy,.,» symmetry, the TDOS has the same
structure of N/S case[4], because in this case
Andreev reflected quasiparticles with incident angle
0 and -0 feel the same energy gap at N/de.y.
When the incident angle @ is #/4, the quasiparticle
Seels no gap (gap node) and TDOS becomes flat.

In the TDOS of N/D junction with dy, symmetry
as in Figure 4(b), however, there appears a zero bias
conductance peak (ZBCP) whenever the incident
angle @1is not equal to 0. This is because the energy
gap experienced by quasiparticles |k'g> and k(> at
the N/D interface is different, i.e., A,(6)cxsin26
and A,(-6)c —sin26 for electron-like state |k'g>

and hole-like state |k’ >, respectively.

One can understand the origin of ZBCP by
regarding the N/S bilayer as a potential well problem.
Since the tunneling barrier acts as a mirror for the
quasiparticle, the potential well width will be twice
of the N layer thickness. For N/d,,.,», the potential
well depth is simply the energy gap Aax.,» and hence
even the lowest bound state energy is greater than
zero. But for N/d,,, the potential drop (energy gap
difference) at x = 0 and -2d has a different sign
which allows a bound state with E=0, that effectively

produces a ZBCP. The appearance of ZBCP in the
high T. superconductor proximity junction was
reported in many literatures[7]-[10].

In the case of N side being a s-wave
superconductor (S/D proximity junction), TDOS is
given by Eq. (4) and (5) with modifications such as
replacing r* by r't and 24y by 2§ + (-6).
TDOS is similar to that of N/D bilayer, but shows
some differences. Density of states is shifted by 4
as one can expect. Resonance peak heights are
increased for every other peak. This is because 2d
oscillation (Tomasch oscillation) is present in this
case in addition to the 4d oscillation (McMillan
-Rowell oscillation). When D is d,, superconductor,
the density of states shows a peak just at the energy
gap of N layer. This can be understood in the same
footing with ZBC observed in the N/d,, bilayer.

V. D'/D bilayer

An interesting phenomenon can arise if N-layer
has d-wave superconductivity (D’/D junction). That
is, an additional complexity occurs because
quasiparticles impinging on the tunneling barrier
(I-D’) after being reflected from D'/D interface can
now acquire a finite probability for the Andreev
reflection in addition to the usual specular reflection.
This unusual Andreev reflection at the tunneling
barrier can happen because the quasiparticle that is
reflected specularly at the tunneling barrier perceives
different pair potentials before and after the reflection
at I-D' due to the anisotropic energy gap in D',

Thus the hole-like quasiparticle |k, > which is

moving toward tunneling barrier splits into two
quasiparticle states |k; > (Andreev reflected) and
|k; > (specularly reflected) upon reaching I-D’
interface.  And these quasiparticles experience
Andreev reflection at D'/D interface and bounce back
as |k, > and |k; >, respectively. Both |k, >
and |k; > can generate |k, > and |k, > with
different amplitudes at the I-D’ interface, and they
will bounce back as [k, > and [k; > again at
D'/D interface. This process will go on indefinitely.

To trace and sum all the terms in a closed form is
rather difficult in this case since the number of the
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reflected terms at the tunneling barrier is doubled

every time a quasiparticle hits the I-D’ interface. '

One can overcome this difficulty by introducing a
matrix representation. If we define g, and b, as

the amplitude of n-th reflected quasiparticle states
{k; > and |k; >, respectively at each succession,

they are related by the relation

(annj:e-zdu[’ﬁsr;vem’ r;st;}ve'g’ ](anj (15)
b,.. r&st;vew‘ "};sr&emﬁ b,

Here reflection coefficients (#’s) and phase factors
(0’s) are similarly defined as for the N/S case, and
transmission coefficients (¢’s) are newly introduced.

Note that ¢’s appear only in the off-diagonal sites.
To obtain TDOS we need to sum up terms like

, #d=100
, Wd=10

, d=4 b
L id=2

Normalized DOS

Energy (E/A)

4 T T

Ra =012, /=100
====RA =117, =10

IFr B RA =292, Wd=4 h
- Ra =584, Vd=2

Normalized DOS
N

Energy (E/A,)

Fig. 5. (a) TDOS of d,;.,» /dys.y, bilayer and (b) TDOS
of d,, /dy, bilayer. Similar to S/d junction, there appear
DOS peak just above the induced gap for d,, symmetry.

Zan and Zb" , and this can be accomplished
n=1 n=l
easily through a unitary transformation of the matrix.

Practically it will be very difficult to realize D'/D
proximity junction except for the case of intermediate
state (vortex) of HTSC and the case of a HTSC with
a degraded surface layer where the surface
superconductivity is reduced by, for example, the
oxygen deficiency. In this case, the orientation of
the energy gap in D’/D will be the same although the
magnitude could be different. For this reason, we
have calculated TDOS in D'/D with the same
orientation of the energy gap.

Figure 5(a) is the «case when dpy
superconductivity is induced in the metal in contact
with d,.» superconductor, and Figure 5(b) shows
TDOS when d,, superconductivity is induced in the
metal in contact with d,, superconductor.
Characteristic features are similar to those when
s-wave in induced in the N side, such as suppressed
DOS below induced gap in d,.,» superconductor and
DOS peak just above the induced gap for dy
superconductor. »

VL Summary

From the quasiparticle wavefunction based on the
Bogoliubov de Gennes equation, we obtained TDOS
for various N/S bilayer proximity junctions such as
N/dx2-y2; N/dxy, S/ dx2-y2’ S/ dxy, dx2-y2/dx2-y25 and dxy/dxy
by counting all the successive Andreev reflections at
N/S interface and specular reflection at the tunneling
barrier side.  Subsequent interference between
incoming and reflected quasiparticle wave generates
a geometric resonance effect. In the simplest case
of N/S and S/S, TDOS obtained in this work
reproduces exactly the same result obtained by the
Green‘s function method. In addition, this method
can be applied easily to the proximity junction
composed of anisotropic superconductors. We
found ZBCP in the N/d,, bilayer and DOS peak just
above the energy gap in the S/d,, and d,,/d,y bilayers
as a result of phase change of = in the order
parameter perceived by Andreev reflected
quasiparticles at the interface of the bilayer.
However, there appears no ZBC peak in the case of
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N/d,s.y2 or S/d,,., bilayer junction, which we can
understand quite naturally. This result can be
applied to the analysis of anisotropic flux flow
resistance in HTSC.
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