준등방성 적충복합재에 있어 압력이 압축 파괴인성에 미치는 영향에 대한 연구

A Study of the Pressure Effect on the Compressive Fracture Toughness of Quasi-Isotropic Composites

  • 이경엽 (경희대학교 기계·산업시스템 공학부) ;
  • 곽대순 (경희대학교 기계·산업시스템 공학부) ;
  • 김상녕 (경희대학교 기계·산업시스템 공학부) ;
  • 이중희 (전북대학교 신소재 공학부)
  • 발행 : 2001.06.01

초록

섬유강화 고분자기지 복합재에 있어 탄성계수, 최대응력, 최대변형률, 파괴특성 등이 압력에 의해 영향을 받는다는 것은 잘 알려진 사실이다. 본 연구에서는 준등방성이며 두꺼운 두께를 갖는 [0$^{\circ}$/$\pm$45$^{\circ}$/90$^{\circ}$]$_{11s}$ 로 적층된 탄소섬유/에폭시 복합재에 있어 압력을 0.1 MPa, 100 MPa, 200 MPa, 300 MPa로 변화시켜 압축 파괴실험을 수행하였으며 이로부터 압력변화에 따른 파괴특성 변화에 대해 검토하였다. 결과로서 가해진 압력이 증가함에 따라 압축파괴인성은 증가함을 알수 있었다. 구체적으로 압력이 대기압에서 300 MPa으로 증가할 때 압축파괴인성 값은 약 44% 증가하였다.

It is known that the elastic modulus, maximum stress, and maximum strain of fiber-reinforced polymer composites are affected by high pressure. Fracture behavior is also known to be affected by high pressure. In this work, the pressure effect on the compressive fracture toughness of thick quasi-isotropic composites was investigated. Dog-bone type specimens of stacking sequence, [0$^{\circ}$/$\pm$45$^{\circ}$/90$^{\circ}$]$_{11s}$ were used. Compressive fracture tests were conducted under four pressure levels. The pressure levels applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. Fracture toughness for each pressure level was determined from the compliance method. The results show that the compressive fracture toughness increases with increasing pressure. Specifically, fracture toughness increases 44% as the pressure increases from 0.1 MPa to 300 MPa.

키워드

참고문헌

  1. Key Engineering Materials v.37 Moisture and Temperature Effects on the Mode I and Mode II Interlaminar Fracture of Graphite/Epoxy Composites Russell, A. J.;Street, K. N.
  2. ASTM STP 1156 Effects of Water and Jet Fuel Absorption on Mode I and Mode II Delamination of Graphite /Epoxy Hooper, S. J.;Subramanian, R.
  3. Composite Science and Technology v.53 Delamination Behavior of a Carbon-Fiber-Reinforced Thermoplastic Polymer at High Temperature Usmatsu, Y.;Kitamur, T.;Ohtani, R.
  4. J. of Materials Science v.17 The Effect of Hydrostatic Pressure on the Tendile Properties of Pultruded CFRP Parry, T. V.;Wrondki, A. S.
  5. J. of Materials Science v.20 Compressive Failure and Kinking in the Uniaxially Allighned Glass-Resin Composite under Superimposed hydrostatic Pressure Wronski, A. S.;Parry, T. V.
  6. J. of Composite Materials v.26 Effects of Hydrostatic Pressure on the Torsional Behavior of Graphite/Epoxy Composites Shin, E. S.;Pae, K. D.
  7. J. of Composite Materials v.26 Effects of Hydrostatic Pressure on In-Plane Shear Properties of Graphite/Epoxy Composites Shin, E. S.;Pae, K. D.
  8. J. of Composite Materials v.29 Effects of Hydrostatic Pressure on the Compressive Propertise of Laminated 0˚ Unidirectional Behavior of Graphite Fiber/Epoxy Thick Composite Rhee, K. Y;Pae, K. D.
  9. Composite Science and Technology v.53 Effects of Hydrostatic Pressure on the Compressive Behavior of Laminated 45˚ and 90˚ Unidrectional Behavior of Graphite Fiber/Epoxy Matrix Thick Composite Pae, K. D.;Rhee, K. Y.
  10. J. of Composite Materials v.32 The Combined Effects of Hydrostative Properties of a Laminated, Multi-Direction al Graphite/Epoxy Thick Composites Pae, K. D.;Carlson, K. S.
  11. J. of Composite Materials v.34 Hydrostatic Pressure Effect on the Fracture Toughness of Unidrectional(0˚) Graphite/Epoxy Laminated Composites Rhee, K. Y.
  12. ASTM STP 1230 Mode I and Mode II Fracture Toughness Measured between Differently Oriented Plies in Graphite/Epoxy Composites Chou, I.;Kimpara, I;Kageyama, K.;Ohsawa, I.