16S/23S Intergenic Spacer Region as a Genetic Marker for Thiobacillus thiooxidans and T.ferrooxidans

  • Lee, Hye-Won (Department of Biological Sciences School of Natural Sciences, Ewha Womans University) ;
  • Choi, Won-Young (Department of Biological Sciences School of Natural Sciences, Ewha Womans University) ;
  • Cho, Kyung-Suk (National Subsurface Environmental Research Laboratory, Ewha Womans University) ;
  • Choi, Won-Ja (National Subsurface Environmental Research Laboratory, Ewha Womans University)
  • 발행 : 2001.12.01

초록

Bioleaching is the process in which insoluble metal sulfide is oxidized by specialized iron- and/or sulfur-oxidizing lithotrophic bacteria in acidic, metal-rich environments. Most of these processes are carried out by the genus Thiobacillus. Three novel Thiobacillus strains (Thiobacillus thiooxidans AZ11, Thiobacillus thiooxidans MET, and thiobacillus thiooxidans TAS) associated with bioleaching have been isolated from soil and sludge (Korean patent No. 1999-0073060 for T. thiooxidans AZ11, Korean patent No. 1999-0005798 for T. thiooxidans MET, and Korean patent No. 1999-0073059 for T. thiooxidans TAS). A partial sequence of 16S ribosomal RNA gene (16S rDNA) and the entire sequence of 16S/23S intergenic spacer region (ISR) were determined in the three above novel strains and in Thiobacillus ferrooxidans ATCC19859 as a reference strain. When phylogenetic analysis was performed based on G+C contents and sequence alignments, T. ferroxidans ATCC19859 was found to be closely related to previously registered T. ferrooxidans strains in a monophyletic manner, while the three novel T. thiooxidans strains were classified in a paraphyletic manner. Close examination on the base composition of 16S/23S ISR revealed that the 5\` part (nucleotide residues 21-200) was specific for the genus Thiobacillus. On the other end, the 3\` part (nucleotide residues 201-520) showed specificity in T. ferrooxidans strains, but not in T. thiooxidans strains. These results suggest that the proximal and distal halves of 16S/23S could be used as a genetic marker for the identification of the genus Thiobacillus and the species T. ferrooxidans, respectively.

키워드

참고문헌

  1. Int. J. Syst. Bacteriol. v.49 RFLP of rRNA genes and sequencing of 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: Phylogenetic approach Aakra, A.;J. B. Utaker;I. F. Nes
  2. FEMS. Microbiol. Rev. v.20 Bioleaching: Metal solubilization by microorganisms Bosecker, K.
  3. Crit. Rev. Microbiol. v.6 Bacterial leaching Brierley, C. L.
  4. J. Mol. Evol. v.28 The evolutionary relationships among known life forms Cedergren, R.;M. W. Gray;Y. Abel;D. Sankoff
  5. Korean patent no. 1999-0073059 Thiobacillus thiooxidans TAS and biological deodorization using the strain Cho, K. S.;H. W. Ryu;E. Y. Lee
  6. Korean patent no. 1999-0005798 Strain of Thiobacillus thiooxidans MET and a method of heavy metal bioleaching using the strain Cho, K. S.;H. W. Ryu;I. S. Lee
  7. Korean patent no. 1999-0073060 Thiobacillus thiooxidans AZ11, and method and apparatus for biological deodorization using the strain Cho, K. S.;H. W. Ryu;Y. K. Chang
  8. Appl. Environ. Microbiol. v.63 PCR-mediated detection of acidophilic, bioleaching-associated bateria De Wulf-Durand, P.;L. J. Bryant;L. I. Sly
  9. J. Mol. Evol. v.17 Evolutionary trees fom DNA sequences;a maximum likelyhood approach Felsenstein, J.
  10. Science v.209 The phylogeny of Prokaryotes Fox, G. E.;E. Stackebrandt;R. B. Hespell;J. Gibson;J. Maniloff;T. A. Dyer;R. S. Wolfe;W. E. Balch;R. S. Tanner;L. J. Magrum;L. B. Zablen;R. Blackemore;R. Gupta;L. Bonen;B. J. Lewis;D. A> Stahl;K. R. Luehrsen;K. N. Chen;C. R. Woese
  11. Appl. Environ. Microbiol. v.65 Leaching of zinc sulfide by Thiobacillus ferroxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions Fowler, T. A.;F. K. Crundwell
  12. Appl. Environ. Micobiol. v.60 Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments Goebel, B. M.;E. Stackebrandt
  13. J. Bacteriol. v.178 Reduced sulfur compound oxidation by Thiobacillus caldus Hallberg, K. B.;M. Dopson;E. B. Lindstrom
  14. Arch. Microbiol. v.131 Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thioocidans Harrison, A. P., Jr.
  15. Annun. Rev. Microbiol. v.38 The acidophilic thiobacilli and other acidophilic bacteria that share their habitat Harrison, A. P., Jr.
  16. J. Microbiol. Biotechnol. v.11 Molecular cloning and characterization of the doxA cytochrome P-450 hydroxylase gene in Streptomyces peucetius subsp. caesius ATCC27952 Hong, Y.-S.;H. S. Kim;J. H. Lee;K. W. Kim;J. J. Lee
  17. J. Microbiol. Biotechnol. v.11 Identification of a sequence containing methylated cytidine in Corynebacterium glutamicum and Brevibacterium flavum using bisulfite DNA derivatization and sequencing Jang, K.-H.;P. J. Chambers;M. L. Britz
  18. Appl. Environ. Microbiol. v.59 Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms Jensen, M. A.;J. A. Webster;N. Straus
  19. J. Microbiol. Biotechnol. v.7 Gene amplification of aceA and aceB in lysine-producing Corynebacterium glutamicum ssp. lactofermentum ATCC21799 Kim, H.-J.;Y. Kim;H.-S. Lee
  20. J. Microbiol. Biotechnol. v.7 Molecular cloning and sequencing of cell wall hydrolae gene of an alkalophilic Bacillus subtilis BL-29 Kim, T.-H.;S.-D. Hong
  21. J. Bacteriol. v.174 Evolutionary relationships among sulfur-and iorn-oxidaizing eubacteria Lane, D. J.;A. P. Harrison, Jr.;D. Stahl;B. Pace;S. J. Giovannoni;G. J. Olsen;N. R. Pace
  22. FEMS Microbiol. Rev. v.14 The chemolithotrophic bacterium Thiobacillus ferrooxidans Leduc, L. G.;G. D. Ferroni
  23. Annu. Rev. Microbiol. v.34 Ore leaching by bacteria Lundgren, D. G.;M. Silver
  24. Annu. Rev. Microbiol. v.39 Microbial desulfurization of fossil fuels Monticello, D. J.;W. R. Finnerty
  25. FEMS Microbiol. Lett. v.142 PCR-mediated detection of the chemolithotrophic bacterium Thiobacillus cuprinus using 23S rDNA-and 16S/23S intergenic spacer region-targeted oligonucleotide primers Moreira, D.;R. Amils
  26. Appl. Environ. Microbiol. v.62 Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation Pizarro, J.;E. Jedlicki;O. Orellana;J. Romero;R. T. Espejo
  27. Appl. Environ. Microbiol. v.58 Evaluation of Leptospirillum ferrooxidans for leaching Sand, W.;K. Rohde;B. Sobotke;C. Zenneck
  28. Appl. Environ. Microbiol. v.65 Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur Schippers, A.;W. Sand
  29. Nucleic Acids Res. v.22 CLUSRAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Thompson J. D.;D. G. Higgins;T. J. Gibson
  30. Microbiology v.142 16S-23S rDNA intergenic sequence indicate that Leuconostoc oenos is phylogenetically homogeneous Zavaleta, A. I.;A. J. Martinez-Murcia;F. Rodriguez-Valera