Estimation of Distribution of a Commensal Thermophile in Soil by Competitive Quantitative PCR and Terminal Restriction Fragment Length Polymorphism Analysis

  • Rhee, Sung-Keun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hong, Seung-Pyo (BioLeaders Corp. Bio-Venture Center) ;
  • Bae, Jin-Woo (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeon, Che-Ok (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Seung-Goo (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Jae-Jun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Poo, Ha-Ryoung (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sung, Moon-Hee (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2001.12.01

Abstract

Symbiobacterium toebii has been previously reported as a novel commensal thermophile exhibiting a commensal interaction with thermophilic Geobacillus sp. SK-1. We investigated the distribution of this commensal thermophile in various soils using molecular methods, such as quantitative PCR and terminal restriction fragment polymorphism analysis. Based on a nested competitive quantitative PCR the 16S rDNA of the commensal thermophile was only detected in compost soils at about $1.0{\times}10^4$ cpoies per gram of soil, corresponding to $0.25{\times}10^4$ cells per gram of soil. However, in an enrichment experiment at $60^{\circ}C$, about $1.0{\times}10^8$ copies of 16S rDNA molecules were detected per ml of enriched culture broth for all the soils, and more than 0.1 mM indole accumulated as the product of commensal bacterial growth. When incubated at $30^{\circ}C$, neither the 16S rDNA of the commensal bacterium nor any indole accumulation was detected. Accordingly, even though the 16S rDNA of the bacterium was only detected in the compost soils by a nested PCR, the presence of the 16S rDNA molecules of commensal thermophile and accumulation of indole in all the enriched cultures appeared to indicate that the commensal thermophile is widely distributed in various soils.

Keywords

References

  1. J. Clin. Microbiol. v.28 Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers Albert, J.;E. M. Fenyo
  2. Microbiol. Rev. v.59 Rhylogenetic identification and in situ detection of individual microbial cells without cultivation Amann, R. I.;W. Ludwig;K.-H. Schleifer
  3. Int. J. Syst. Bacteriol. v.44 The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combications Collins, M.D.;P. A. Lawson;A. Willems;J. J. Cordoba;J. Fernandez-Garayzabal;P. Garcia;J. Cai;H. Hippe;J. A. E. Farrow
  4. Int. J. Syst. Bacteriol. v.45 Phylogenetic evidence that the gramnegative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the gram-positive bacteria and description of Tissierella creatinini sp. nov. Farrow, J. A. E.;P. A. Lawson;H. Hippe;U. Gauglitz;M. D. Collins
  5. J. Microbiol. Biotechnol. v.10 Analysis of the genome of Symbiobacterium toebii by pulsed-field gel electrophoresis Hong, S.-P.;J.-H. Park;Y.-S. Kim;H.-J. Hwang;S.-K. Rhee;S.-G. Lee;M.-H. Sung;N. Esake
  6. Nucleic Acid Techniues in Bacterial Systematics 16S/23S rRNA sequencing Lane, D. J.
  7. Appl. Environ. Microbiol. v.62 Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method Lee, S.-Y.; J. Bollinger;D. Bezdicek;A. Ogram
  8. Science v.276 Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene Maymo-Gatell, X.;Y. Chien;J. Gossett;S. H. Zinder
  9. The Procaryotes The genus Syntrophomonas Mcinerney, M.I.;A. Balows(ed.);H. G. Truper(ed.);M. Dworkin(ED.);W. Harder(ed.);K. H. Schleifer(ed.)
  10. Biosci. Biotechnol. Biochem. v.63 Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain Ohno, M.;I. Okano;T. Watsuji;T. Kakinuma;K. Ueda;T. Beppu
  11. Proc. Natl. Acad. Sci. v.93 A psychrophilic crenarchaeon inhabits marine sponge: Crenarchaeum symbiosum gen. nov., sp. nov. Preston, C. M.;K. Y. Wu;T. f. Molinzski;e. F. DeLong
  12. Extremophiles v.4 Onlogately commensal interaction between a new gram-negative thermophile Symbiobacterium toebii and Bacillus sp. strain SK-1 Rhee, S.-K.;S.-G. Lee;S.-P. Hong;Y.-H. Choi;J.-H. Park;C.-J. Kim;M.-H. Sung
  13. The procaryotes The genus Bdellovibrio Ruby, e. G.;A. Balows(ed.);H. G. Truper(ed.);M. Dworkin(ed.);W. Harder(ed.);K.-H. Schleifer(ed.)
  14. J. Gen. Microbiol. v.134 Growth of a tryptophanase-producing thermophile, Symbiobacteium thermophilum gen. nov.,sp. nov., is dependent on co-culture with a Bacillus sp. Suzuki, S.;S. Horinouchi;T. Beppu
  15. Microbiol. Mol. Biol. Rev. v.62 A natural view of microbial biodiversity within hot spring cyanobaterial mat communities Ward, D. M.;M. J. Ferris;s. C. Nold;M. M. Bateson
  16. Agric. Biol. Chem. v.53 Tryptophan production by a lipoic acid auxotroph of Enterobacter aerogenes having both pyruvic acid productivity and high tryptophanase activity Yokota, A.;S. Oita;S. Takao
  17. Nucleic Acids Res. v.21 Absolute quantification of target DNA: A simple competitive PCR for efficient analysis of multiple samples Zachar, V.;R. A. Thomas;A. S. Goustin
  18. Nucleic. Acids Res. v.21 Isolation of genomic DNAsfrom plants, fungi and bacteria using benzyl chloride Zhu, H.;F. Qu;L.-H. Zhu