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Two Sequential Wilcoxon Tests for Scale Alternatives
Prafulla Chandra Mishra!

ABSTRACT

Two truncated sequential tests are developed for the two-sample scale
problem based on the usual Wilcoxon rank-sum statistic for two different
dispersion indices - absolute median deviations, when the medians of the
two populations X and Y are equal or known and sums of squared mean
deviations, when the medians are either unknown or unequal. The first test
is briefly called SWAMD test and the second SWSMD test. For the SWAMD
test, the percentile points for both the one-sided and two-sided alternatives,
2% and |z|%, have been found by Wiener approximation and their values
computed for a range of values of o and N; analytical expression for the
power function has been derived through Wiener process and its performance
studied for various sequential designs for exponential distribution. This
test has been illustrated by a numerical example. All the results of the
SWAMD test, being directly applicable to the SWSMD test, are not dealt
with separately. Both the tests are compared and their suitable applications
indicated.

Keywords: sequential, non-parametric, Wilcoxon rank-sum statistic, scale alter-
native, Lehmann alternative, percentile point, truncation point, power function.

1. INTRODUCTION

In the past four decades considerable work has been done on the sequential
rank tests for location/symmetry. Among the notable are by Wilcoxon, Rhodes
and Bradley (1963); Wilcoxon and Bradley (1964); Bradley, Martin and Wilcoxon
(1965); Bradley, Merchant and Wilcoxon (1966); Savage and Sethuraman (1966);
Sethuraman (1970); Miller (1970,1972); Weed and Bradley (1971,1973); Weed,
Bradley and Govindarajulu (1974); Sen and Ghosh (1974a); Lai (1975); Phatar-
fod and Sudbury (1988); Sen and Mishra (1994); Mishra (1999) and Mishra and
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Sahoo (1999). Most of these tests are based on Lehmann alternatives devised
specially for determining the power of the rank tests by Lehmann (1953). As
established by several authors, use of such alternatives for measuring location
change is not misleading for all practical purposes. In fact, this has facilitated
development of sequential rank tests for location problems. By contrast, very
little is known about sequential tests for scale alternatives. The purpose of the
present article is to investigate this problem and develop some sequential tests
based on the well known Wilcoxon rank-sum statistic to test the variability be-
tween two independent populations.

In the behavioural and social sciences there is often interest in testing for
differences in dispersion. For example, determining that a particular group is
more homogenous than another could be of value in developing special instruc-
tional materials for that group. In fixed-sample non-parametric set up, the test
developed by Siegel and Tukey (1960) is appropriate for comparing differences in
scale or variability under the assumption that the medians of the two populations
are the same or known. To have a sequential test in this situation, we note that
each absolute value of the deviations of observations from the common median is
in itself a measure of variability. Therefore, the Wilcoxon rank-sum statistic for
the absolute values of such deviations can be used as a consistent test statistic
against the scale alternative. Here observations are taken sequentially in pairs
from X and Y populations and at each stage n, n = 1,2,.--- | N (truncation
point), the Wilcoxon statistic W), is computed for the 2n absolute deviations of
the observations from the common median M. The logic of the Wilcoxon test for
location is then applied in developing the sequential test based on W, for the scale
alternatives in analogy with Miller’s (1972) linear barrier test in one-sample case.
The test to be called Sequential Wilcoxon Test for Absolute Median Deviations
(SWAMD test) has been described in Section 2.

There are many situations in which the medians are either unknown or cannot
be assumed equal. The Moses (1963) rank-like test is useful in such cases in
the fixed-sample size set up. To compute the Moses statistic it is necessary
to divide the observations from the two populations into subsets of equal size,
discarding the left over observations from the analysis. Thus the data are not
fully utilised. Apart from other advantages, this problem can be avoided if we
can develop a sequential rank-like test based on the Wilcoxon rank-sum statistic
for some dispersion indices using the same logic of the Wilcoxon test for location
for testing the hypothesis of equal variability of the two populations against the
one-sided or two-sided alternatives. In Section 3, we have developed such a test,
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referred to as Sequential Wilcoxon Test for Sums of squared Mean Deviations
(SWSMD test). Here random samples of equal size m are drawn sequentially
from the two populations and at each stage n, n = 1,2,.-- | N, the Wilcoxon
statistic W is computed on the basis of the 2n sums of squares of the deviations
of the observations from the respective sample means. The sequential methods
and other results of the SWAMD test are directly applicable to the SWSMD test
once W, is replaced by W and therefore not dealt with separately.

For the SWAMD test, with pre-assigned probability of type-I error o and
truncation point N, analytical expressions for the critical constants for both
the one-sided and two-sided tests, z{ and |z|%;, have been found by Wiener
approximation and their values computed for a range of values of @ and N in
Section 4. In Section 5, analytical expression for the power function of the test
has been derived through Wiener process and its performance studied for different
sequential designs in terms of the power for exponential distributions. This test
has been illustrated in Section 6 through a numerical example. In the concluding
Section 7, both the tests have been contrasted and their suitable applications
briefly discussed.

2. THE SWAMD TEST

First consider the case when the two populations have the same median M or,
if the medians are known, they can be subtracted from each sample observation
to render the ’adjusted’ medians equal (zero). In this case each absolute value
of the deviations of observations from the common median is in itself a measure
of variability and therefore we consider using this criterion in developing the
desired test. Suppose (X1, Y1), (X2,Y2),- - are observations drawn sequentially
in pairs from two independent populations X and Y having continuous cumulative
distribution functions (cdf’s) F and G respectively. Suppose the X— and Y —
populations differ only in scale. The logical model for this situation would be

H,:G(z) = F(fz) for all z and some 6 > 0,0 # 1 (1)

where § = 0;/0,;0, and oy are standard deviations of X~ and Y —populations
respectively. This is appropriately called scale alternative because the cdf of the
Y — population is the same as that of the X — population but with a compressed
or enlarged scale according as 8 > 1 or < 1 respectively.

The objective of this investigation is to develop a sequential test for testing the
null hypothesis Hp : 6 = 1 against the one-sided scale alternative H; : § > 1 (of
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course, § < 1 could be an alternative) or against the two-sided scale alternative
Hy’ : 6 # 1 based on the Wilcoxon rank-sum statistic defined for the absolute
deviations of the observations from M.
Let Xyt = |X; — M|, Yuy=|Y; - M|, i=1,2---,n
Z; =1, if i-th observation in the combined ordered sample of 2n absolute
deviations X;/ and Y;/ is an X,/.

= 0, otherwise 1=1,2,---,n
Dij =1, if }/j/ < Xy
=0,if Y1 > Xy i,j=1,2--,n.

Then the Wilcoxon rank-sum statistic W, and the Wilcoxon-Mann-Whitney
statistic Uy, for the transformed variables X;/ and Y;/ at the n-th stage are given
by

2n n o n
Wo=> Z,Un=)Y_ Y Dy (2)
i=1 i=1 j=1
and U, =W, —n(n+1)/2,n=1,2,...,N.
Under Hy,

E(W,) =n(2n + 1)/2 and Var(W,) = n?(2n +1)/12 (3)

Therefore, in analogy with Miller’s linear barrier test for the one-sample case,
the SWAMD test for testing Hy against the one-sided scale alternative H; is
stated as follows: At the n-th stage observe (X,,Y,), compute W,, from (2) and
take one of the decisions:

(a) Continue sampling as long as n < N and

Wn—n(2n+1)/2 < 2%n (4)
(b) Reject Hy (accept Hy) if for some n < N
Wyn —n(2n+1)/2 > 23n (5)

(¢} Accept Hj if n reaches N without the inequality (4) being violated.

The truncation point N and the probability of type-I error a are chosen by
the statistician that determines the critical constant z§. .

An analogous test for the two-sided alternative Hy/ : 8 # 1 would be to
continue sampling as long as |[W,, —n(2n+1)/2| < |z|%n and n < N. If for some
n <N, |[Wp—n(2n+1)/2| > |2|%n, then reject Hy (accept Hy/ ); otherwise accept
Hy. |z|% is the upper a-percentile point for the two-sided test, also determined
by a and N. Both 2§ and |z|} have been estimated by Wiener approximation
in Section 4.
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3. THE SWSMD TEST

Let us now consider the situation when the two population medians are ei-
ther unknown or can not be assumed equal. Let groups of observations are
taken sequentially, with each group consisting of m independent observations
from the X~ population and m independent observations from the Y — popu-
lation, where X and Y have the cdf’s as defined in section 2. Then at n-th
stage of the sequential process, we have the observations Xp1, Xn2, -+, Xpm and
Y1, Yo, - , Yom,n=1,2,--- | N where N is the upper bound on the sequential
sampling. We calculate the dispersion indices for the sample of m X —observations
and m Y —observations obtained at each stage n by

D(Xn) = f:(an - Xn)2’D(Y’n) = i(YNl - Yn)Qan - 112a Tt 7N

=1 =1

where X, = (1/m) Y"1 Xpi, Yo = (1/m) Y12, Yn; are the sample means of X —
and Y — observations at stage n.

Now, if the null hypothesis of equal variability is true, we would expect that
the values of D(X,) and D(Y,) should be well mixed in that the dispersion
measures obtained at different stages should be similar. On the other hand, if
the alternative hypothesis that variability of X is more than the variability of
Y is true, then we would expect that the values D(X,) would generally tend
to be larger than the D(Y;). Hence the logic of Wilcoxon test for location can
be applied to test the hypothesis of equal dispersion against the one- or two-
sided alternatives on the basis of Wilcoxon rank-sum statistic W} defined for the
dispersion indices D(X,,) and D(Y},) as follows:

W, = Sum of the ranks of the D(X,,) in the combined ordered sample of

n

2n indices D(X,) and D(Y,)

2n

= Y iz}

i=1

where Z; = 1, if the ¢-th item in the combined ordered array of 2n indices D(X,,)
and D(Y,) is a D(X,,)
= 0, otherwise , t1=1,2,--,n

Then the mean, variance and all other properties of W)} are same as that for
W, . Consequently, the sequential procedures and other results on critical points,
power, etc., of the SWAMD test are directly applicable to the test based on W}

y
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called the SWSMD test, once W, is replaced by Wy . Therefore in the following
sections we will restrict our study to the SWAMD test only.

4. CRITICAL CONSTANTS

Let V,, = (W, —n(2n+ 1)/2]/n
Zy = max{V1,Va, - Wnt 1ZIv = {IWi], Val, s [V}

In order for the one-sided SWAMD test to have size « , the critical con-
stant z{ must be the upper a— percentile point of the distribution of Zy, i.e.,
P{Zn > 25} = a. Similarly |2|% is to be determined by P{|Z|x > |2|%} = a.
Since the exact distribution of Vi, Vs, ..., Vv is a complicated discrete multivariate
distribution, both Zy and |Z|y have discrete distributions and are therefore in-
tractable. However, the values of 2% and |z|; can be approximated by a Wiener
process. Under Hj, we have from (3),

E(V,)=0and Var(V,) = (2n +1)/12=n/6 (6)
Also, using the backward martingale property of U, , we have for m < n,
E(Un/Un) = (m/n)*Un; E(Un.Uy) = (m/n)*E(U})
Hence,
Cov(Vim, V) = Cov(Up, Up)/mn = m?*(2n + 1)/12mn = m/6 (7)

The approximate normality of V;, with the mean, variance and covariance
given by (6) and (7) suggests that the V,,n = 1,2,--- | N are behaving like
Z(n)/v6 , where Z(n) is a standard Wiener process with zero mean and variance
n. This approximation gives

P{Zy >c} = P{ max Z(n)/6>c} = 2P{Z(N)> cV6}
= 2[1 - ®(cV6/VN] (8)

~

where @ is the standard normal cdf. The approximation (8) implies that 2§ =
V' Ng®/2/\/6 , where g*/2 is the upper a/2- percentile point of ®. If the probabil-
ity of crossing both the positive and negative boundaries by time N is negligible,
then |2|$ = VNg®*/+/6 . The values of 2% and |2|% for N = 10(5)30(10)50 and
a = 0.01,0.05,0.1 are computed and displayed in Tables 1a,1b.

Miller (1972) has shown that values of the percentile points for his linear
barrier test obtained by Wiener process approximation are in close agreement
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with the Monte Carlo estimates for the above range of  and N. Further, Miller
and Sen (1972) have established an invariance principle for U—statistics which
gives an asymptotic justification of the Wiener process approximation for the
critical constants. Therefore, it is felt that the estimates of 2% and |z|§ by
Wiener approximation in the given range are quite justified and there is no need
to venture into simulation process for the purpose.

Table la: Values of 2§, by Wiener Approximation

« N
10 15 20 25 30 40 50
0.01 3.32 4.07 4.70 5.26 5.76 6.65 7.44
0.05 2.53 3.10 3.58 4.00 4.38 5.06 5.66
0.10 2.12 260 3.01 3.36 3.68 4.25 4.75

Table 1b: Values of |z|% by Wiener Approximation
N

« N
10 15 20 25 30 40 50
0.01 3.62 444 5.13 573 6.28 7.25 8.10
0.05 2.89 354 4.09 458 5.01 5.79 6.47
0.10 253 3.10 3.58 4.00 4.38 5.06 5.66

Table 2a: Wiener Power of the Tests (one-sided), N = 20

« 0
1 2 3 4 6
0.01 0.01 0.21 0.64 0.82 0.98
0.05 005 056 0.82 096 1.00

Table 2b: Wiener Power of the Tests (one-sided), N = 50

«a g
1 1.5 2 2.5 3
0.01 0.01 019 0.66 0.90 0.98
0.05 0.05 049 0.84 0.98 1.00

5. POWER OF THE TESTS

We know that the asymptotic normality of U, holds even in the nonnull case,
where the mean and variance of U, depend on the parameters p,pl and p2 given
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by
p=P<X) = [ G@WF) 9)
pi=P(Y; < X;NYe < X;) = [ : (G(z)2dF (=) (10)
ps= P(Y; < XiNY; < Xp) = /Z [ — F(z)dG(z) (11)

Even under the more specific scale alternative (1), these integrals depend on
both 8 and F. Therefore, evaluating even approximations to power requires that
the basic parent population be specified. From Gibbons (1985, p. 142), we have,
under H,

E(Vy) = nu(8); Var(Vy) = no?(8) + a(6) = no?() (12)
where 1(6) and 0%(8) depend on F, but not on n. Now, using the asymptotic nor-
mality of V,, the behaviour of V;,,n = 1, 2,..., N can be approximated by a Wiener
process Z(n) with drift un and variance 0?n and, noting from Miller (1972, p.104),
the Wiener approximation to power function of the one-sided SWAMD test for
specified F is given by

. — «
Pp(§;N,a) = P{Oghang Z(n) > zx}
= exp(2uz%/0?).®(—uVN /o — 2% /oVN) + ®(uVN/o — 2% oV N)
(13)

The power of this test has been investigated for the exponential distribution
F, which represents the scale alternative (1).
Let
f(z)=e " z>0and g(z) =07 % >0,0>0,0#1 (14)

Then
Flz)=1-e¢%2>0andG(z)=1-e%,2>0,6>0,6#1  (15)

so that G(z) = F(fz) for all z and some § > 0,6 # 1, which is same as the
alternative (1). Now, using the probability functions (14) and (15) in (9), (10)
and (11), we easily find that

p=0/(0+1), p=20/(0+1)(20+1), p=06/(6+2)

E(V,) = un; Var(Vy) =o’n+0(1) = o’n
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where
p=0/0+1)—05 o2=06%+40+1)/0+1)*O+2)(20+1) (16)

Substituting the values of u and ¢ obtained from (16) for various true values
of 0 and the specified @ and N in (13), we get the Wiener power of the SWAMD
test (or the SWSMD test) against the alternative H; : 0 > 1. For N = 20, the
performance of this test has been studied at 8 = 1,2,3,4,6 ; for N = 50, at
# = 1,1.5,2,2.5,3. The error probability « is taken to be either 0.05 or 0.01.
The results are displayed in Tables 2a,2b, which indicate that the test is having
very satisfactory power in the entire range of the alternative considered. Wiener
approximation to the power of the two-sided test can be found in a similar way.

It is interesting to note that the results in Tables 2a,2b are in close agreement
with the Wiener powers of Miller’s one-sample sequential test with linear barriers,
as given in Tables Vb, VIb of Miller (1972) for different values of the location
parameter under the double exponential distribution, but with the same set of
values of @ and N.

6. AN ILLUSTRATIVE EXAMPLE

An institute of microbiology is interested in purchasing microscope slides of
uniform thickness and needs to choose between two different Suppliers. Both have
the same specifications for median thickness, but may differ in variability. It is
desired to test the variability in stages with a minimum of total experimentation,
but subject to maximum of 10 pairs of slides. It is also desirable to conduct
sequential experiments with known small risks of type-I error, say o = 0.05 or
0.01. Accordingly, the institute selects randomly a pair of slides from the two
Suppliers at each stage, gauges the thickness of the slides using a micrometer and
reports the data as deviations of the measurements from the specified median
M. The data so reported in the form of X-M and Y-M, where X and Y refer
to the observations from the 1st and 2nd Suppliers respectively, are given below.
Which Supplier makes slides with a smaller variability in thickness ?

X-M :0.028,0.029,0.011, —0.030,0.017, —0.012, —0.027, —0.018, 0.022, —0.023

Y-M : —0.002,0.016,0.005, —0.001, 0.000, 0.008, —0.005, —0.009, 0.001, —0.019

The one-sided SWAMD test is the most appropriate for this problem. Here
we have to test the null hypothesis Hy : 8 = 1(0; = 0y) against the alternative
Hy : 8 > 1(o; > oy) by sequentially examining the statistic W, — n(2n + 1)/2
and comparing it with the boundary n. z% for a = 0.05 or 0.01, N = 10 and
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n=1,2,3,--- to take a decision regarding the variability in thickness of slides
supplied by the two Suppliers. The sequential procedure is summarised in Table
4. Tt reveals that the SWAMD test rejects the null hypothesis of equal variability
in favour of the alternative that the 2nd Supplier has the smaller variability in
thickness of the slides (o, > gy) at 6—th stage of the sequential experimentation
at 5 % level of significance. The same conclusion is also drawn at 1 % level, but
at the cost of two more pairs of observations. A

It is also found that this test terminates with acceptance of the two-sided
alternative that the two variances are not equal at 7—th and 8—th stages for o =
0.05 and 0.01 respectively (since, 7.z|% = 20.23 for o = 0.05 and 8.|2|% = 28.96
for a = 0.01).

The data used for this illustration have been adapted from Examplé 15.8.1 of
Gibbons (1985, p.314), where same decision is taken on the basis of fixed sample
of 10 pairs of slides by applying the Siegel-Tukey test. Thus, in this particular
instance, there has been 40 percent saving in the number of observations by
applying the sequential procedure. Of course, this is not true in general.

Table 4: Summarisation of sequential computation of the test statistic and
rejection boundaries of the SWAMD test for the data on thickness of
microscope slides from two Suppliers

n | |X - M| ||Y - M| | Configurations of ordered | W, Wh— nzy nzf
(z) () z and y upto stage n nn+1) a=.05 | a=.01
2 N=10 | N=10
1 0.028 0.002 yx 2 0.5 2.53 3.32
2 0.029 0.016 yyxx 7 2.0 5.06 6.64
3 0.011 0.05 YyXyxx 14 3.5 7.59 9.96
4 0.030 0.001 YYYXYXXX 25 7.0 10.12 13.28
5 0.017 0.000 YYYYXYXXXX 39 11.5 12.65 16.60
6 0.012 0.008 YYYYYXXYXXXX 55 16.0 15.18 19.92
7 0.027 0.005 YYYYYYXXYXXXXX 75 22.5 17.71 23.24
8 0.018 0.009 VYYYYYYXXYXXXXXX 98 30.0 20.24 26.56
9 0.022 0.001 YYYYYYYYXXYXXXXXXX 124 38.5 22.77 29.88
10 0.023 0.019 YYYYYYYYXXYXXYXXXXXX 149 44.0 25.30 33.20

7. COMPARISON AND APPLICATION OF THE TESTS

A modest attempt has thus been made in this paper to develop two sequential
Wilcoxon tests for testing the scale differences between two independent popu-
lations under two different situations. When the population medians are equal
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or known, the SWAMD test is most appropriate because of considerable savings
in total number of observations. When medians are unknown or unequal, the
SWSMD test is applied. But in this case some additional computations are re-
quired. Due to grouped sequential sampling, the number of observations required
for coming to a decision will inevitably rise, but it cannot go beyond 2mN, N
being the upper bound on the amount of sampling. Further, the efficiency of this
test is a function of the size of the sample at each stage. The efficiency increases
with increase in sample size, but there is a trade-off, since increasing the sample
size leads to rapid increase in total number of observations and make the test
uneconomical. With pre-assigned truncation point N to terminate the test, rig-
orous study of the expected sample size through simulation is of little practical
value and hence not carried out for any of the tests. Unlike the SWAMD test, the
SWSMD test requires that the observations are measured on at least an interval
scale.

Although ties in the original data are no problem in the application of the
tests, adjustment for ties must be made in the usual way applied to Wilcoxon test,
if there are ties in the dispersion indices. As the power of the tests is indirectly
determined by « and N, these have to be specified with due care.

Both the tests are straightforward to apply and easy to explain to nonstatis-
ticians. They are most suitable in medical applications, where selection of an
alternative hypothesis and its associated power is often difficult or extremely ar-
bitrary and a bound on the amount of sampling is usually easier to determine due
to limitations of resources like time, money, manpower, patients, etc. Many other
applications for these tests can also be found in social, psychological and edu-
cational studies where difference in variability between two independent groups
needs to be tested with controlled type I error and with a minimum of total
experimentation.
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