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On Quantiles Estimation Using Ranked Samples with
Some Applications

HANI M. SAMAWI!

ABSTRACT

The asymptotic behavior and distribution for quantiles estimators us-
ing ranked samples are introduced. Applications of quantiles estimation on
finding the normal ranges (2.5% and 97.5% percentiles) and the median of
some medical characteristics and on finding the Hodges-Lehmann estimate
are discussed. The conclusion of this study is, whenever perfect ranking is
possible, the relative efficiency of quantiles estimation using ranked samples
relative to SRS is high. This may translates to large savings in cost and
time. Also, this conclusion holds even if the ranking is not perfect. Com-
puter simulation results are given and real data from Iowa 65+ study is used
to illustrate the method.

Keywords: Simple random sample, ranked set sample, normal ranges, quantiles,
extreme ranked set samples, Hodges-Lehmann, order statistics.

1. INTRODUCTION

Before the diagnostic value of the medical measures can be evaluated, we
need the normal ranges for these measures. By definition, the normal range of
a continuous variable contains 95% of all disease-free individuals in a population
and therefore, 5% of the disease-free people can have abnormal values. In case
of simple random sample (SRS), estimation of those normal ranges (2.5% and
97.5% percentiles) using sample quantiles require a sample of size 400 to 2000
quantified population units.

Ranked set sample (RSS) was introduced by MclIntyre (1952) for estimating
the pasture yield. RSS procedure involves randomly drawing n sets of n units
each from the population for which some characteristics of the distribution is to
be estimated. It is assumed that the units in each set can be ranked visually or
at little cost. From the first set of n units the unit ranked lowest is measured
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accurately, i.e., it is quantified. From the second set of n units the unit ranked
second lowest is quantified. The process is continued until the cycle is completed
by quantifying the n-th ranked unit from the n-th set.

Takahasi and Wakimoto (1968) warned that in practice the number of units
which are easily ranked cannot be more than four. If a large sample size is
required, then the sampling process can be repeated independently and identi-
cally m times producing a total sample size of mn. Also, Samawi et al. (1996)
investigated the use of extreme ranked set samples (ERSS) for estimating the
population mean. They indicated that ERSS reduces the ranking error for larger
set size since it did not need complete ranking.

Stokes and Sager (1988), showed that the empirical distribution function using
RSS is unbiased and has greater precision than the one obtained by using SRS.
Also, they indicated that RSS based procedures can also be applied to human
populations.

One application of RSS empirical distribution is to find the normal range
for some medical measure (e.g., level of the hemoglobin in the blood.) This
task is not feasible when using SRS, because of the high cost of the required
medical tests to establish those medical measures. However, if we can rank the
individuals at little cost, then the RSS can be used. This can be done in many
ways. For example, one can distribute a questionnaire contains some leading
questions associated with the medical measure of interest to the units in the SRS
that has been selected and then ranking the units according to their answers.
Then the RSS can be obtained and be quantified by using some costly medical
examination. Another method is, by using available medical records for finding
some medical characteristics in those records which are highly related to the
medical measure under consideration or by using some an inexpensive medical
screening test. Then RSS can be selected by ranking the selected random sample
according to the information in those medical records or according to the result
of that screening test by quantifying the units in RSS using some costly medical
examination. On the other hand, some medical conditions can be can be screened
visually and then the patients can be ranked according to their conditions. For
example, to establish the normal ranges for the level of bilirubin in the blood of
the jaundice premature babies, ranking on the level of bilirubin in the blood can
be done visually by an expert physician by observing the following:

i- Color of the face.
ii- Color of the chest.
iii- Color of the lower parts of the body.
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iv- Finally, the color of the terminal parts of the whole body.
Then as the yellowish goes from i to iv the level of bilirubin in the blood goes
higher.

In this paper, we are interested in studying the quantiles estimation and using
them for estimating the normal ranges of some possible medical measures and for
finding the Hodges-Lehmann estimate. We show that using RSS for estimating
the quantiles and for estimating a location parameter using Hodges-Lehmann
estimate are more efficient than using the SRS. Asymptotic results for quantiles
estimators as well as some properties of the Hodges-Lehmann estimator using
RSS and ERSS are introduced. This study showed that the efficiency obtained by
using RSS rather than SRS for estimating the population quantiles have the same
pattern as that given by Stokes and Sager (1988) for estimating the distribution
function. In fact, this work is partially an extension of their work. In Section 2,
we describe some sampling plans, discuss estimation of the population quantiles
using these plans, and give some definitions and general results. Hodges-Lehmann
estimate using RSS and ERSS and its properties are discussed in Section 3 for
perfect ranking. Simulation results from some known distributions are given in
Section 4. In Section 5, we illustrate the method using real data from the RHS
blood study (Brock et al., 1986). The findings are discussed in Section 6.

2. SAMPLES AND ESTIMATING POPULATION
QUANTILES

Let { X1k Xoupr s Xuni Xiows Xooeo -+ Xoai 5 Xt Xinio 5 X
k =1,2,--- ;m} be nm independent random samples of size n each which are
taken from a population. Assume that each unit Xk in the sample has the same
distribution function F'(z) with finite mean u, variance 0? and p-th quantiles
(p- For the simplicity of notation we will assume that X;;; denote the mea-
sure of the Xi*jk unit. Then according to our description the SRS may be chosen
as { X116y X12k, -+ » X10k;6 = 1,2,--- ,m} and denoted by X3, Xo, -+ , X,m. Let
X(*l)ik, X(*2)ikv R X("n)i,c be the ordered statistics of the i-th sample of the k-th cy-
cle X1, Xy Xp(1=1,2,--- ,n;k=1,2,--- /m). Then { X Xk s
Xmk; k= 1,2,--- ,m} denotes the RSS, where X(;;; = X;)ix . Also, { X1k,
X2k X)) {n-1}k> X(ynks & = 1,2,--- ,m} denotes ERSS when n is even,
which is the only case that will be considered in this paper.

In the r-th sample of the k-th cycle, X (r)x denotes the measure of r-th smallest
judged observation. The density and the cdf of X(r)k will be denoted by f,) and



670 Hani M. Samawi

F,) , respectively. The population density and cdf will be denoted by fand F,
respectively.

For 0 < p < 1, the p-th quantile is define as {, = inf{z : F(z) > p} and is
alternately denoted by F~!(p). Suppose we have selected and measured the SRS
X1,X2, -+, Xnm of size nm from the population with respect to some variable
X. Then the order statistics of the SRS is denoted by X(1), X(2),*** s X(mn) »
thus the sample p-th quantile may be expressed as

= (1)

. X (mnp) if mnp is an integer,
X([nmp)+1) if mnp is not an integer,

where [g] is the greatest integer less than or equal to g.
Suppose that F is twice differentiable at {, , with F'({;) = f(¢p) > 0. Then
Bahadur (1966) showed that under SRS,
2 b F (Cp)

Cp = Cp + “‘m—‘ + Ryn, (2)

where F' is the sample empirical distribution function and with probability 1 (wp.
1)

Rum = O((nm)~¥*(log mn)/?(log log mn) /%), m — . (3)
Therefore, \/mn(ép — (p) converge in distribution to N(0, %l(—zg). Using this
result, the approximate 100(1 — a)% confidence interval is given by

o[ 2L=R) (4)
nmf2((p)

where f is any consistent estimate of f using SRS and Z,, /2 is the upper (1—a/2)

quantile of the standard normal distribution.

Now suppose we have selected and measured the RSS { X1y, X(2)k -+ * » X(n)k;
k=1,2,--- ,m} of size nm from the population with respect to the same variable
X. Let the order statistics of the RSS be denoted by Yi,---,Yp,m. Then the
sample p-th quantile using RSS may be expressed as

Ep - Za/

é* ) Yamp if nmp is an integer, %)
i Yinmpj+1 if nmp is not an integer.

Stokes and Sager (1988) defined the empirical cdf of RSS by

n

. 1 -~
F*(t) = _— ;k_l X[ X £ 1, (6)
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where x[:] is the indicator function. Also, the following theorem summarized

their results:

Theoreml. Stokes and Sager (1988):
1 - F* is an unbiased estimator for F.

2 - var(F*) = # > Fiy (@)L — Firy (1))
r=1

= —n—l'rr_z {F(t) - Z[Ip(t)(r,n -7+ 1)]2/n} ,
r=1

where I (r,n—r+1) (see Arnold, 1992) is the incomplete beta ratio function.
3 - [F*(t)—E(F*)])/\/var(F*), converges in distribution to a standard normal
variable as m — 0o, when n and t are held fized.

In this paper we extend Stokes and Sager (1988) theorem further as follows:
Define Zy = %{ E:Lzl X[X(T)k: < t]v {k =1,2,--- am}’ then Zl, Z2a e 7Zm are i.i.d
with mean E(Z;) = F(t) and variance

var(Zy) = nl—5 > Fuy(0)[1 - Fpy(t)] = 7’1; {F(t) = Upy(rn—r+ 1)]2/"} :
r=1

r=1
(7)
Clearly, for fixed n and ¢, the mean and the variance of Zj are finite.
Therefore, by the strong law of large numbers, F*(t) — F(t) wp. 1. Now let

Cp
F(G) = / " P () (8)

assuming the existence of the integral, define the functional Tp(F) = F~Yp) = ¢p,
then (5 = T,(F*). Since F*A(t) — F(t) wp. 1 and F(t) is assume to be absolutely
continuous, it follows that (7 — (, wp. 1.

Under the assumptions of Bahadur theorem (1966) then for fixed p and n

=% — b— F*(CP)
% =%t 7

+R,, (9)
where F* is the RSS empirical distribution function and wp. 1.
Ry, = O((m)~3/*(log m)!/*(log log m)'/*) (10)

Therefore, \/ﬁ(fg —(p) converge in distribution to N (0, {p—>_;_,([Ip(r,n—r+1))?
/n}/nf?((p)). Using this result, the approximate 100(1 — &)% confidence interval
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is given by

3

3 \/ =3 p(ryn—r+1)2/n
Yoz nmf2(G)
where I,(r,n — r + 1) is the incomplete beta ratio function ( see Arnold, 1992),
f is any consistent estimate of f and Z, /2 is the upper (1 — a/2) quantile of the
standard normal distribution.

2.1. ASYMPTOTIC RELATIVE EFFICIENCY OF C;

The asymptotic relative efficiency (AREF) of é; with respect to fp is given
by X
MSE(Gp)
MSE()’
where MSE(+) is the mean square error of the estimator. However, the asymptotic
MSE of {, under Bahadur (1966) conditions is

AREF = (11)

. 1-P
MSB(G) = . (12
Similarly, the asymptotic MSE of C; is
- 1)]2
Therefore, using (12) and (13),
AREF = p(l—P) (14)

{p -2l (r,n —r + 1))2/n}

Stokes and Sager (1988) Table 1, gives for perfect ranking of X the value of
AREF for some values of p and n = 2,-.-,5. They indicated that the AREF is
monotone increasing from p=0 to p=0.5, achieve its maximum at p=0.5 and it
is symmetric about that point. For example, when n=>5 and p=0.01, 0.05, 0.10,
0.30 and 0.50, the values of AREF are 1.04, 1.20, 1.38, 1.88 and 2.03 respectively.
Also, they showed that in case of using concomitant random variable Y to X
(see Stokers, 1977), and hence imperfect ranking, the loss in precision under
bivariate normality, although substantial, is not as great for estimating F', and
hence estimating (, , as for estimating the mean of the distribution. In the
next section, another application of quantiles estimation, in particular finding
the Hodges-Lehmann estimate, is discussed.
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3. HODGES-LEHMANN ESTIMATOR

Let F(z) be absolutely continuous symmetric distribution with unique median
0. Let X,,X5, -, Xnm be a random sample from F(z — 6). Hence 6 is the
unique median and mean (when it exists) at the center of the distribution. Then
the nm(nm + 1)/2 Walsh averages are defined by 5—%&,2 < 4, (see for example
Hettmansperger, 1984.) As an application for quantiles estimation is the Hodges-
Lehmann estimate for 6 which is define as the median of these Walsh averages,

that is 6 = med;<; (@L) Note that, under the symmetry of the underlying

distribution function assumption, the distribution of the 8 is symmetric about 6
(see Hettmansperger, 1984.)
Similarly, let { Xy, Xy, s Xk = 1,2,--+ ,m} be the RSS drown
from F(z — #), then again 6 can be estimated by
« Xy + X
ORSS = medB ('—(l)k 2 (])l) y
where B = {(7‘7.77 k7l) 14 < jand /OI‘ k < l} Also, let {X(l)lkvX(n)Zka e 7X(1){n—l}ka
X(nynki kB =1,2,--- ,m} be the ERSS, when 7 is even, drown from F(z ~6), then
# can be estimated by

(15)

Xy + Xyt Xmyie + Xmyjt Xyie + Xn)ji (16)
2 ’ 2 k 2 ’
where C = {(4,7,k,l): i < jand Jor k <l;i,7=1,2,--- ,n/2}.

fprss = medc (

Theorem 2. If F' is symmetric about 0, then the distributions of (15) and (16)
are symmetric about 6.

Proof: It is clear that estimators (15) and (16) are translation statistics. Then
we have Pg(éng —-0<z)= Po(égss < z) and Pg(éERSS -0<z)= PO(éERSS
< z). Hence without loss of generality take § = 0. Now since F is symmetric, then
it can be shown that X, 4 —X(n-i+)k and Xy 4 Xk = 1,2, m
and i =1,2,--- n, (see for example Arnold, 1992.) Since the number of maxima
and the number of minima in ERSS are equal then {X ()5, X(2)k,"** , X(nyks k =
L2, ’m} g {_X(l)k? _X(Q)Ic, Tt _X(n)lc§ k=1,2,--- am} and {X(l)lka X(n)Zka
L X -3 Xynkr k= 1,2, ,m}Ai {=XW1e> =Xy, s =Xy {n-138>
—X(nynk; k= 1,21--- ,m}. Fromﬂ(15), Orss(X) and ?Rss(—X) }Alave the same
distribution but 6rss(—X) = —0rss(X), therefore, Orss and —6rgs have the
same distribution. Similarly, it can be shown that OERss — 6rRrss have the same
distribution. Hence the theorem follows.
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4. SIMULATION

The normal, exponential and logistic distributions are used in the simulation
for perfect ranking. Sample sizes (m=30, n= 3), (m=10, n=10), (m=2, n=40)
and (m=1, n=64) and three values of p=0.05, 0.50 and 0.95 are considered.

In case of using concomitant random variable ¥ to X, the bivariate normal
distribution is used. Sample sizes (m=30, n=3) and (m=10, n=10) and three
values of p=0.05, 0.50 and 0.95 are considered.

For each of the possible combinations of distributions, sample sizes and dif-
ferent values of p, 5000 data sets were generated. The relative efficiencies for
estimating the population ¢, using RSS with respect to SRS are obtained. The
values obtained by simulation for perfect ranking are given in Table 1. In Table
2 we give the simulation results when concomitant random variable ¥ to X is
used.

To study the performance of the Hodges-Lehmann estimate when using RSS
and ERSS compare with using SRS, N(2, 1), Logistic(2, 1) and uniform(0, 2)
are used in the simulation. Sample sizes n=4, 5, 6, and 8 and m=1 and 4
are considered. The simulation size is based on 5000 generated data sets. The
results of the simulation of the performance for the Hodges-Lehmann estimators
are given in Table 3.

Table 1: The relative efficiency of RSS relative to SRS
for perfect ranking: m(n).
Distribution function  30(3)  10(10)  2(40)  1(64)
Normal (0, 1)

p=0.05 1.14 1.52 2.71 3.27

p=0.50 1.64 2.88 6.21 8.33

p=0.95 1.19 1.52 2.30 3.00
Exponential(1)

p=0.05 1.14 1.66 3.63 4.75

p=0.50 1.65 3.05 5.82 7.88

p=0.95 1.14 1.44 2.16 2.75
Logistic(0, 1)

p=0.05 1.05 1.50 2.62 3.36

p=0.50 1.77 2.87 6.09 7.51

p=0.95 1.10 1.50 2.30 2.87
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Our simulation indicates that using RSS for estimating the quantiles are more
efficient than using SRS. Their application to normal ranges may translate to a
large saving in time an cost. Also, the efficiency of quantiles estimation using
RSS has same pattern of efficiency obtained from the asymptotic results when
ranking is assumed to be perfect. For example, in case of n=3, the values of the
asymptotic relative efficiency for p=0.05, 0.50, and 0.95 are 1.10, 1.60 and 1.10
respectively which are very close to the values obtained by the simulation, see
Table 1. Note that these efficiencies are independent of the cycle size m.

Table 2 indicates that in case of imperfect ranking using RSS is still at least
as good as using SRS. Also, Table 2 shows, as expected, that the loss in precision
under bivariate normality, is decreasing as p (the correlation coefficient between
X and Y) increases to 1.

Table 2: The relative efficiency of RSS relative to SRS in case of using
concomitant random variable Y to X.

D m(n) p=090 0.80 050 0.20
Normal (0, 0, 1, 1, p)

0.05 1.10 1.03 100 1.00
0.50 30(3) 1.49 133 107 1.00
0.95 1.12 1.09 100 1.00
0.05 1.31 1.16 1.04 1.03
0.50 10(10) 1.91 1.52 1.33 1.08
0.95 1.33 1.23 1.10 1.0

Table 3: The relative efficiency of RSS and ERSS relative to SRS for the
Hodges-Lehmann estimate

N(2, 1) Logistic(2, 1) Uniform(0, 2)

m n RSS ERSS RSS ERSS RSS ERSS
4 245 2.17 2.35 1.82 2.24 3.37
5 2,67 2.25 2,17 1.96 2.69 4.06

1 6 3.23 2.49 3.19 1.79 3.12 6.60
7 3.88 2.87 3.84 2.11 3.90 7.07
8 4.16 2.69 4.11 1.92 4.38 12.75
4 249 2.17 247 1.80 2.52 4.04
5 313 2.64 2.98 2.29 3.33 4.84

2 6 3.44 2.51 3.52 1.95 3.53 8.43
7 4.09 2.83 3.90 2.13 4.08 9.85
8 431 2.67 4.55 2.06 3.04 14.56
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Table 3, demonstrate that RSS and ERSS both are superior to SRS for finding
the Hodges-Lehmann estimate. It is not surprising that RSS is more efficient than
ERSS in case of normal and logistic distribution, however, ERSS is more efficient
than RSS in case of uniform distribution (see Samawi et al., 1996.) Note that
ERSS is more practical than RSS. Moreover, the efficiency of using RSS and
ERSS compared with SRS is increased by increasing the set size. However, in
some case the efficiency is slightly increased by increasing the cycle size m.

5. EXAMPLE: Normal Range of Hemoglobin Level in the Blood

This example is just to illustrate the method. The data for this example
is drawn from the Iowa 65+ Rural Health Study (RHS). RHS is a longitudinal
cohort study of 3,673 individuals (1,420 men and 2,253 women) aged 65 or older
living in Washington and Iowa counties of the state of Iowa in 1982. This study
is one of the four supported by the National Institute on Aging and collectively
referred to as EPESE, (Established Populations for Epidemiologic Studies of the
Elderly), National Institute on Aging, 1986.

In the Jowa 65 RHS there were 550 disease free women aged 70+ reported the
Erythrocytes counts (RBC) million/mm? blood and Hemoglobin level gm./100ml.
blood. The question of interest is to estimate some of the normal ranges (5% and
95% quantiles) of the Hemoglobin level of these women. However, since the RBC
is highly related to Hemoglobin level, in this example we ignore the Hemoglobin
records and we draw SRS and RSS of size 100 each based on RBC.

The results of this example is given in Table 4. The RSS sample size is (n=10,
m=10). However, to find 95% confidence interval for the normal ranges based on
the RSS we assume perfect ranking. Based on the asymptotic results we found
that SE(fp) ~ 2.18 and SE(f;) ~ 1.82 and hence the AREF=1.44.

Table 4: Estimation of the Hemoglobin Normal Range ({p) from
the Iowa 65+ RHS
p  Estimate 95% Confidence Limits

Lower-limit Upper limit
RSS: Sizel0(10)

0.05 11.50 7.93 15.07

0.95 15.70 12.52 19.27
SRS: Sizel00

0.05 12.20 7.93 16.47

0.95 15.95 11.68 20.22
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6. DISCUSSION

The blood data is a good example where we need to find efficient estimator for
the population quantiles (normal ranges) for some medical measures. Whenever
RSS procedure can be conducted, it provides us with large saving in quantified
sample size and hence money and time. With the use of RSS one can practi-
cally establish normal ranges for any medical measure using substantially fewer
disease-free subjects. Since one must expect the normal ranges to depend on age,
gender and ethnicity, the savings is magnified many times when establishing a
comprehensive set of normal ranges.

We recommend using RSS to estimate the normal ranges, whenever, it is pos-
sible to conduct RSS. It will give an asymptotically unbiased and more efficient
estimate of the normal ranges. Also, in some application where finding Hodges-
Lehmann is needed, it is recommended to use either RSS or ERSS; also some
further investigation about the estimators asymptotic properties is encouraged.
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