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M/G/1 Queueing System with Vacation and
Limited-1 Service Policy

B-L. Lee! W. Ryu? D-U. Kim?, B.U. Park® and J-W. Chung*

ABSTRACT

In this paper we consider an M/G/1 queue where the server of the system
has a vacation time and the service policy is limited-1. In this system, upon
termination of a vacation the server returns to the queue and serves at most
one message in the queue before taking another vacation. We consider two
models. In the first, if the sever finds the queue empty at the end of a
cacation, then the sever immediately takes another vacation. In the second
model, if no message have arrived during a vacation, the sever waits for the
first arrival to serve. The analysis of this system is particularly useful for a
priority class polling system. We derive Laplace-Stieltjes transforms of the
waiting time for both models, and compare their mean waiting times.

Keywords: M/G/1 queue, Poisson process, priority polling system, Laplace-
Stieltjes transform.

1. Introduction

In an M/G/1 queueing system, it is assumed that the messages arrive at the
queue according to a Poisson process, the service time has an arbitrary distribu-
tion and there is a single server. In this paper we consider an M/G/1 queue where
the server of the system has a vacation time and the service policy is limited-1. In
this syetem, the server has vacations and service periods alternately. Returning
from a vacation, the server serves only one message, if any, in the queue and
then takes another vacation. We consider two models. In the first, to be called
Model I, when the server returns from a vacation and finds the system empty, it
immediately takes another vacation, and continues in this manner until if finds
at least one waiting message upon return from a vacation. The second model , to
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be called Model II, differs from Model I in that, when it finds the system empty
at the end of a vacation, the server waits for the first message arrival to serve
before taking another vacation.

The analysis of a queueing system with a vacation period is particularly useful
in a priority polling system. A priority polling system, like a cyclic one, consists
of a single server shared by multiple queues and each queue is served in an order
specified in a so-called polling table. For a particular queue in this polling system,
the server may be thought to have a vacation when it is serving the other stations.
Thus, the results for a queueing system with a vacation period can be applied
directly to a priority polling system. See, for example, Baker and Rubin (1987)
and Ryu et al. (1998).

Eisenberg (1972), and Levy and Yechiali (1975) have considered an M/G/1
queueing system with a vacation period and exhaustive service policy. Here we
complement their results in the case of limited-1 service. For Model I and II, we
derive the Laplace-Stieltjes transform of the sojourn period which is the total time
elapsing from the moment when a message arrives at the queue to the moment
of service completion. From this we obtain the Laplace-Stieltjes transform of
the waiting time for a message. The basic tool for doing this is to consider an
embedded Markov chain defined on an extended state space. Furthermore, we
calculate and compare the mean waiting times of the two models. It turns out
that Model II is always more efficient than Model 1.

2. Analysis of Model 1

We suppose that the stream of message arrivals is a homogeneous Poisson
process with rate A. Let N(¢) denote the number of messages arriving at the
queue during the time period ¢. Then, N(t) follows a Poisson distribution with
mean Af. Let S be the service time for a single message. Let Vj denote a single
vacation period. The random variables S and V; are allowed to have arbitrary
distributions. Let V' be the total period of consecutive single vacations.

We consider a Markov chain with transitions occurring at the times of service
completion or vacation termination. Since these two instants activate different
transition rules, we need to distinguish them in defining the state space of the
numbers of messages in the queue. We define an extended state space {(¢,7) :
i=0,1;5=0,1,2,...} — {(0,0)} in such a way that if i = 0 then j counts the
number of messages at the instant of vacation termination, and if 7 = 1 then j
denotes the number of messages immediately after a service completion. Note
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here that the state (0,0) does not exist in our model.
Let (in,jn) be the state of the system at the n-th transition. The transition
law for this semi-Markov chain is given by

(tn+1,Jn+1) = $ (0,40 + N(V5)) ifin=1,j4p>1.
(OvN(V)) if in = 1a jn =0
Define m;; = nlLI&P(in =14, jp = 3j);% =0,1,7 = 0,1,2,.... These limiting

probabilities satisfy the following equations :

J
my = moP{N(V)=j}+> mP{N(Vo)=j—k},j=1.2,...
k=1
j+1
m; = > mkP{N(S)=j—-k+1},7=0,1,2,....} (2.1)
k=1

Write co = P{N(Vp) = 0} = E(e~*Y) = Ly,()). Here and below Lx(-) denotes
the Laplace-Stieltjes transform of the distribution function of a random variable
X. We have for j > 1

P(N(V)=j} = P{N(V)=3j, N(Vy) =0} + P{N(V) = j, N(Vp) > 1}
= P{N(Vo) = 5}/(1 - co). (2.2)

We introduce the generating functions of {7g;} and {m;}. Define
[e.¢] ) o0
mo(z) = szm)j, m(z) = szmj.
=1 =0

From the equations (2.1) and (2.2), we obtain

M8

mo(z) =

J
2 { TP (N(Vo) = 5) + Y P (N (Vo) = j — k)}
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- kazkzzfp {N(Vo) =8} + 1 20710 Z AP (N(Vp) = j}

k=0 £=0
~To P {N(%) =0}
= m(2)G)(2) - f"_’”c‘:) {1 -Gy (@)} (2.3)
Similarly we get
m(2) = 27 m0(2)G () (2)- (2.4)

From the equations (2.3) and (2.4), we obtain

comio {1 — G (2)} Grs)(2)
(1 = co) {Gn(w)(2)Gn(s)(2) — 2}

By applying I"'Hépital’s rule on (2.5), we may obtain

mi(2) =

co m10 AE(Vp)
(1 —co) {1 = XE(Vo) — AE(S)}

We now derive the Laplace-Stieltjes transform of the sojourn period, denoted
by C, and the waiting time, denoted by W, of a message. Note that P{N(C) =
J} = mi;/m1(1), hence

G(cy(2) = E(z"(©) = my(2)/m (1).
Since G y(c)(2) = Lo(A(1 — 2)), we obtain from (2.5) that
{1—>\E(V) AE(8)} {1 — Ly, (A(1 — 2)) }Ls( (1-2))
Vo) {Lvy (A1 — 2))Ls(A(1 = 2)) — 2} )

Thus, by letting o = A(1 — 2), we get

{1 = AE(Vo) — AE(S)} {1 — Ly, (e)} Ls(a)
AE(WVo) {Lwy(@)Ls(a) — (1 — a/A)}

Since C = W + § and the two random variables W and § are independent, we
have Lw(a) = L¢(e)/Ls(a). Thus

7r1(1) =

Le(M1 —2)) =

Le(a) =

{1 - AE(Vo) — AE(S)} {1 — Ly, ()}
AE(Vo) {Lvy(a)Ls(a) — (1 —a/A)}

Ly(a) = (2.6)
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3. Analysis of Model I1

Here again we consider a Markov chain with transitions occuring at the epochs
of service completion or vacation termination. We note that in this model the
state space includes the state (0,0), i.e. the instant where the server finds the
queue empty at the end of a vacation. The transition law for the corresponding
semi-Markov chain is given by

(Lin+ N(S) - 1) ifin=0,jn2>1
(in+1,Jdn+1) = { (1,N(S)) ifin =0, jn=0
(0,3n + N(V0)) if ip = 1.

The limiting state probabilites then satisfy the following equations :

j
my = »_ muP{N(Vo)=3j—-k},j=0,12,...

k=0
j+1
™ = mooP{N(S) = j} +Z7r0kP{N(S) =j—k+1}7=0,1,2,....
k=1
(3.1)
From (3.1) we can show the generating functions my = Z;";O ZImg; and
m(2) = Y 52 2/m j satisfy the following two equations :
mo(2) = m(2)Gn(vp)(2)
7r1(z) == {2_171'0(2) + (1 - Z“l)’/ro()}GN(S)(Z). (32)
From the equation at (3.2), we obtain
1-2"1)G 2)m,
() ( )G n(s)(2)moo (33)

T 1— 2G5 (?) Gy (2}

Applying 'Hopital’s rule on (3.3), we get m1(1) = {1 — AE(Vp) — AE(S)} ~1mgo.
The Laplace-Stieltjes transform of the waiting time W is derived in a way similar
to the derivation of (2.6) and is

_ o1 = AE(Vy) — AE(S)}
Lw(a) = {oo+ ALg(a) Ly, (o) — A}

(3.4)
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4. Comparison Between the Models

We compare the mean waiting times of a message. First, we derive the formula
for the mean waiting time in each of the two models. For Model I, it follows from
(2.6) that the mean waiting time, denoted by E(W7), is given by

E(W;) = —Lw(0)
1E(V{) + AE(V#) + 2E(Vo)E(S) + E(S2).

2EVe) T2 1= AB(Vy) = \E(S) (4.1)

The equation (4.1) may be verified by applying ’'Hopital’s rule twice. The mean
waiting time for Model II, denoted by E(Wi;), is also obtained by applying
I’Hopital’s rule successively on (3.4) and is given by

NE(V3) + 2B(Vo) E(S) + E(5?)

BWn) === AE(Vo) — AE(S) (4.2)

From (4.1) and (4.2), the mean waiting time for Model II is always smaller
than the one for Model I by the amount E(VZ)/ {2E(V;)}. In the case, for
example, where a single vacation period Vj follows an exponential distribution
with mean pu, this equals u. Thus, in this case, the difference between the mean
waiting times is amplified as the average single vacation period increases.
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