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On Asymptotic Property of Matheron’s Spatial
Variogram Estimators

Yoon-Dong Lee! and Eun-Kyung Lee?

ABSTRACT

A condition in which the covariances of Matheron’s variogram estimators
are expressed in a simple form is reviewed. An asymptotic property of
the covariances of the variogram estimators is examined, and a sufficient
condition that guaranties the finiteness of the asymptotic variance of the
normalized variogram estimators is provided.
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1. INTRODUCTION

For an intrinsically stationary random field, {Z(s) : s € R%}, the variogram
2+(h) which is defined as 2v(h) = Var(Z(s + h) — Z(s)), for all h € R? is a
measure of spatial dependence of the process Z(-). Gaussian model, (piecewise)
linear model, etc. are commonly used model variograms. Linear variogam model
is a special case of the power variogram model, 2v(h) = [|h||® with § = 1. To
be a valid variogram model, the well-known two conditions, conditional nega-
tive definite condition and order-2 stationary condition should be satisfied. The
conditional negative definite condition is directly derived from nonnegative defi-
niteness of Fourier transform of spectral density (ref. Cressie, 1993, p. 60), and
the order-2 stationary condition, derived by Armstrong and Diamond (1984), is
stated as

2v(h)

k|2
In weak stationary case, the order-2 stationary condition is automatically satis-
fied.

We consider the sample Z is the observed values of Z(s) at the points con-
tained in a set, D € IR. That is, Z = {Z(8) : 8 € D} and the set D is the set
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—0, A= oo. (1.1)
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of sample points. Matheron (1962) suggested the method of moment estimator,
24(h), of the variogram 2v{(h) as follows;

250 = 37 3 (Zla+h) = Z(a)), (12)

8eD(h)
where D(h) = {s € D : s+ h € D} and N(h) is the number of the elements in
the set D(h), i.e. |D(h)|. The set of sample points D is conveniently assumed
to be a subset of Z¢%. When we deal with non-regular lattice data in practice, the
definition of the set D and D(h) needs to be slightly changed to give tolerance
between exact lattice points and sample points which are not on the exact lattice
points.

Cressie (1985,1993) obtained the exact expression of the covariance of the
variogram estimators, Cov(2%(h1),2%(hz)), by assuming Gaussianity. He also
obtained the asymptotic approximation of the variance of the variogram estima-
tor,

Var(24(h)) ~ -ﬁfm(zv(h;e»z, (1.3)

when 2-(h; 8) is the true variogram model. Asymptotic expression (1.3) was used
to justify and to explain the good performance of his weighted least estimators
(WLS) of the parameter 6 of the model variogram.

Although the approximation (1.3) is very simple and persuasive in explaining
WLS, the true variance of the variogram estimator is not well approximated by
(1.3). Even in some cases, the value of N(h) - Var(29(h)) goes to infinity, but
the term {2v(h;8)}? in RHS of (1.3) may take only finite value. Inaccuracy of
the approximation (1.3) is also noted in Zhang etal. (1995). In the following sec-
tions, we will generally consider the properties of the covariances of Matheron’s
variogram estimators. First, we will test the conditions under which the term
Cov(29(h1),24(h2)) is expressed in a simple form as Cressie (1985) suggested.
Next, we will develope more precise approximation of the variances and covari-
ances of the variogram estimators than approximation (1.3) in asymptotic view
point. Finally, we will suggest a sufficient condition that guarantees the finiteness
of the asymptotic variances of the (normalized) variogram estimators.

2. COVARIANCES OF MATHERON’S VARIOGRAM
ESTIMATORS

Generally covariances of variogram estimators are functions of the fourth order
moment terms of the underlying process. To get the the covariance formula of
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variogram estimators in terms of the second order moment terms, we need to
define the fourth order cumulant function of the spatial process. Assume that
the intrinsically stationary spatial process {Z(s): s € IR%} has the characteristic
function ¢z(-; 81, 82, 83, 84) of the marginal distribution of (Z(sy),...,Z(s4)),
at four arbitrary points of spatial indices {81, 82, 83, 84}. If the quantity

34
81,...,84) = | ————10 t;81,...,8 2.1

is the same constant regardless of the choice of 81,...,84 € IR?, then the fourth

moment terms of the process Z(s) are expressed with their second moment terms.

Lemma 2.1. For an intrinsically stationary process {Z(8)}, if the condition,
fz(sl,...,34)=fz for all 81,...,84€Bd

is satisfied, then the covariance of the variogram estimators is shown as,

R R 2
Cov(29(h1),2%(h2)) = Wue%?hl)ve;hz)q(u —v,hy,hy), (2.2)

where
a(u, b1, hg) = {y(u) —y(u + h1) = v(u — hy) + y(u + hy — hy)}? .

The proof is given in Appendix.

The form of covariance function (2.2) implies the correlation formula derived
by Cressie (1985). We need to note that there is no restriction on the sampling
points and sampling region in proving the lemma. That is, even for nonlattice
sampling the lemma is also applicable.

If the random sequence {Z(i)}2; is an i.i.d, £z should be 0 to satisfy the
condition in lemma 2.1. The cumulants generating function log¢z(t) has the
form ) f(t;) for a function f(-) for i.i.d. case, and the partial derivatives w.r.t.
two different variables ¢; and t; make all terms 0. Generally, the intrinsically
stationary condition in lemma 2.1 is not necessary. Without the condition, we
Just need to replace the terms of ~(-) in (2.2) with the terms of u(.) defined in
(A.3). Since £z = 0 for all Gaussian processes {Z(s)}, all Gaussian processes
having constant means autometically satisfy the condition of the lemma.
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From (2.2), the variances of the variogram estimator are directly derived as

Var(@4(h) = oy S Y. {2v(u—v)—y(u—v+h)—y(u—v-h)}
ueD (h1) veD(h3)
(2.3)

If the process {Z(s)} has varying mean, say E{Z(s8)} = u(s), from (A.1) we get

Cov((Z(u) — Z(u + h1))%, (Z(v) — Z(v + hp))?)
= Cov((Z(u) — Z(u + k1)), (Z(v) — Z(v + h2))?)
+2d,(u, hy) - [{z — Z(u+h1)H{Z(v) - Z(v + ha)} ]
+2d, (v, hy) - E[{Z('v) — Z(v + k) H{Z(u) — Z(u + hl)}z]
+4d,(u, h1)dy(v, hz)E[{Z(u) ~Z(u+h)}H{Z(v) - Z(v+ h2)}]

for Z(8) = Z(s) — u(s) and d,(u,h) = p(u) — p(u + h). Thus, when the mean
of the process is not constant, the third moment term of the process {Z(s)}
appears in Cov(29(hy),24(h2)).

As an example we can consider the stationary process {Z(s)} having the
Gaussian variogram model ; 2v(h) = 26, - (1 — exp(—(62|h1|? + 03]h2[?))), with
61 = 1.0, 8 = 0.2, and 03 = 0.3. Suppose that we choose the three lag vectors,
hi = (0,1),h2 = (1,0),h3 = (1,1). Assume 2% = (29(h1),29(h2),27(h3)),
D = {(s,7) : i,j = —2,...,3}, the integer-lattice points in the sampling region
R =(-3,3] x (-3,3]. Then, from lemma 2.1, we have

1.0793722 0.4032465 1.404173
Cov(24,29) = 35+ | 04032465 23014128 2.635349
1.4041734 2.6353489 6.135458

3. FINITE ASYMPTOTIC VARIANCE

The variances and covariances of variogram estimators are functions of vari-
ogram model and sample size. In spatial situation, increasing domain asymptotics
(IDA), infill asymptotics (IFA), and mixed versions of IDA and IFA are asymp-
totic frameworks that can be considered. IDA assumes that one observes the
spatial stochastic process at an increasing number of sites such that any two sites
are at least a fixed distance apart. In this case, the sampling region eventually
becomes unbounded, as the sample size tends to infinity. In IFA, the sampling
region is necessarily bounded, and more and more samples are taken from the
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given region. As a result, the minimum distance between the data-sites tends to
zero as the sample size tends to infinity (ref. Lahiri, 1996). In the followings, we
will only consider the case of IDA which is the most basic asymptotic framework,
for the simplicity of arguments. The related topics to the mixed version of IFA
and IDA are reviewed in Lahiri etal. (2001).

To set the asymptotic structure, we assume that the set of sample points,
D, is the set of lattice points in the sampling region, R, , which is defined to
be an inflated set of a set Ry, by a scaling factor A\, i.e. D = R, N Z¢
and R, = A, - Ky, where X, is a sequence of real numbers going to infinity
as n — oo, and Ry is an open subset of (-},4] containing the origin. Ry
is vaually assumed to have good properties such as regular boundary condition
(ref. Lahiri, 1996) and star-shape property (ref. Sherman and Carlstein, 1994).
Since the set of sample points D depends on the parameter 7, all other symbols
related to D also depend on n. To denote this, the subscript n will be appended
to all related symbols when it is needed, as in the cases of D, , N, and 4,(h).

Under the standard weak dependence assumptions on the random field and
related asymptotics shown in Ibragimov and Linnik (1971), we derive the asymp-

totic quantity of (2.3) in the following theorem.

Theorem 3.1. With the two sets D(h,u) = {8 € D(h)|8+u € D(h)}, and D°(h,u) =
(D(h,w))* N D(h), the set D(h) is devided into two disjoint parts. When Nf(h,u)
denotes the number of the points in D(h,u), if the condition,

: 2
> N w{2v(w) - v(u—h) =@ +h)} =o(Na(h)  (31)
UueD,(h)
is satisfied, in asymptotic view points of IDA, the variance of the variogram given

in (2.8) is approzimated by

Vera(h) = gas 3 {2v(w) = alu—h) -yl n}. 62
ucD(h)

The proof is given in appendix.

The approximation (1.3) suggested by Cressie (1985) also gives a good ap-
proximation consistently with (3.2), if

F(u+h)+y(u—h)
2

—v(u) =~ 0, (3.3)
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for all other points of u except few points near the origin 0. Approximation (1.3)
underestimates the true asymptotic variance most of cases. In the example which
will be stated at the end of this section, the value of N(h)Var(29(h)) obtained
from (3.2) takes oo, but {2v(h)}? in (1.3) takes only finite values for all h.

In asymptotic view points, to adjust sample size effect, the normalized vari-
ogram estimator /N(h)-24(h) is considered. When sampling sites lie on the
integer grid D, , the asymptotic covariance of normalized variogram estimators
is given as

Ny - Cov(29,(h1), 29 (he)) —

3 2 {y(u) = y(u+h1) = v(u - ho) +y(u+ by —ha)}? (3.4)
uezZd

as n — oo provided the conditions of lemma 2.1 and the conditions on the
sampling region R, in the IDA framework are satisfied. We will call the RHS of
(3.4) asymptotic covariance matriz (ACV), in short. From (3.4), each variance
term is obtained as

Ny - Var(29,(h1), 29, (h2) = D 2-{27(w) —v(u — h) —v(u = h)}* (3.5)
uezd
which depends on the model variogram itself.
In the Gaussian variogram model mentioned as an example in the previous
section, the ACV of the model is

1.3074411 0.6800292 1.805354
0.6800292 2.7185115 3.139840
1.8053538 3.1398401 6.481423

Since the summation in (3.4) and (3.5) cover the whole region of Z¢, the
RHS of (3.4) and (3.5) may not be finite depending on the model variogram.
Thus we need to devise a criterion to check whether the variogram model have
finite asymptotic variance. The next theorem provides a sufficient condition that
the ACV (3.4) will be finite, for 1-dimensional spatial process.

Theorem 3.2. For an 1-dimensional intrinsic stationary process {Z(8) : s €
IR} having the variogram model, 27,(|h|), assume that there exists a sequence

{Cr} of constants satisfying the following conditions.
1/k

i) limsup % = 0.
k—oo )
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ii)  There exists a positive constant M, such that () is analytic on [M, c0)
and

o 2
>

Then, the normalized variogram estimator \/Ny(h)-29,,(h) has finite asymptotic
variance,

>~ 2= {2vo(lul) = ¥ollu + Al) = ¥olu — A1)}

ueZ

The proof is given in Appendix.

For the variogram model 2y(k) = |h|? of the 1-dimensional fractional isotropic
Brownian motion in IR, because of order-2 stationary condition, (1.1),  should
be a value in (0,2). The conditions in theorem 3.2 require 8 < 1.5 to have finite
asymptotic variance. When 8 = 1.5,

(@r(w) ~y(u+ 1) = (=) = 2 T +0()

for sufficiently large value of u. Hence the asymptotic variance cannot be finite
for 8 = 1.5. Although theorem 3.2 says the condition only in the direction of
sufficiency, the condition looks very tight and nearly necessary.

4. CONCLUSION

In theoretical view point, we reviewed the conditions in which the covariance
of Matheron’s variogram estimators would be expressed in the simple form as
Cressie (1985) suggested. The better asymptotic variance of the variogram esti-
mator than the previously suggested approximation was obtained in IDA asymp-
totic framework. With the new asymptotic variance, We obtained sufficient con-
ditions that guarantee the finiteness of the asymptotic variance. As shown in the
example, since not all valid variogram models give finite variances of (normalized)
variogram estimators, when we assume the finiteness of the asymptotic variances
of the variogram estimators, we need to give careful attention in choosing the
model variogram.
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APPENDIX

Proof of lemma 2.1 Obviously,
Cov(24(h1),29(he)) = ) N i) > Y Cu(u,vhi,hy), (A)
ueD(h1 YyveD(hs)

where
Cv(u,v,h1,h2) = Cov((Z(u) — Z(u + h1))?, (Z(v) — Z(v + h2))?) .

To represent covariance term of RHS in (A.1) with second moment terms of the
underlying process, we need the followings. Define centralized moments of order
k,

k
ﬂ'(sl, rr,8k) = E{ H (Z(sl) - ll:(si))},
i=1

and m(8, 82, 83, 84) = (81, 82, 83, 84) — p(81, 82)u(83,84).

Since intrinsic stationary precesses are assumed to have constant mean, we
may assume E{Z(s)} = 0 without loss of generality. Fix s;,...,84 € IR%. For
simplicity, assume that (Z(s1), Z(82), Z(83), Z(84)) has a characteristic function,
which we again denote by ¢z(¢), i.e.

é7(t) = E{ exp ity Z(s1) +ity Z(s3) +its Z(s3) +ity Z(s4))}.

Define P(t) =log¢z(t), and

ak
mﬂt) =Pyt (t) = Py gy

Then, ,
a
Ot 0ty ¢Z(t) = (‘Ptl:t2 + Ptl : }Jtz)qSZ(t) .

Since p = 0, P,(0) = 0 Vi, and Py, (0) = u(ss,s;),
ot
[Btl Bta0tat: 2 (t)] 0
¢’Z(O) ) [Ptl,tz (O)Pta,h (0) + Ptl,ta (O)Ptz,h (0) + Pt1,t4 (O)Ptz,ta (0) + Pt1,t2,t3,t4 (0)] .

If the condition of the 2.1 is satisfied,

©(81, 82, 83, 84) = p(81, 82) (83, 84) + 1181, 83) p1(82, 84) + 181, 84)11(82, 83) + 2.
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Hence,
m(sla 82, 83, 84) = u(81783)“(827 34) + ,U,(Sl, 34)/‘1‘(82’33) + £Z' (A2)
Since Cov(Z(ul)Z(uz),Z('vl)Z('vg)) = m(ul,ug,'vl,'vg),
2 2
Cov{ (Z(u + h) — Z(w))’, (Z(v + ha) — Z(v)) }
= m(u,u,v,v) + m(u,u,v + he,v + hy) — 2m(u,u + hy,v,v)
+ m(u + h1,u + hy,v,v) — 2m(u, u,v,v + hy)dm(u,u + hy,v,v + hy)

+m(u+h1,u+h1,v+h2,v+h2) = 2m(u,u + h1,v + ha,v + h3)
—2m(u+ hy,u + hy,v,v + ha).

By substitututing (A.2), we get
Cov{(Z(u +hy) = Z(w)% (Z(v + ha) - Z(v))2}
= 2{u(u,v) — p(u,v + ha) — p(u + h1,v) + p(u + hy,v + h2)}2, (A.3)

and by plugging this into (A.1), the result follows.

Proof of lemma 3.1 With the q(u, hy, h2) defined in lemma 2.1,

N(h)-Var(24(h)) = (h > Y qu-v,hh)

weD(h,) veD(hs)

2
= NR) Z Z q(u —v,h,h)

'weD(hu v)u ~U=w

=2 ¥ (M Nchw)}q(w,h,h).

weD(h)

2

With the condition (3.1) the result directly follows.

Proof of lemma 3.2 Under condition ii) 7,(¢) is analytic for sufficiently large
values of ¢, and here,

o

7o(k)(t) k
70(t+h)=Z—k—'h, VE>M, t+h>M (A.4)
k=0 !
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when v,*)(-) means k-th order derivative of ,(-). In the followings, we will use
two new symbols a set A and a coeficient function ¢ for notational convenience.
They are defined as follows ;

A= {(a,ﬂ) to, 8= 0,—h,h}
4, ifa=0and g =0,
cla,f) =< 1, ifa#0and B #0,
—2, otherwise.

From (A.4),

(270 (t) — 7o(t — B) — 7ot + h))2

= S ¢ [ZZ% k'l' )kﬂ for t,t+h,t—h € [M,o0).

(a,ﬂ)eA k=2 1=2
(A.5)

In asymptotic variance, we need to sum (A.5) over the region {s : [s| > M}.
This summation is approximated by 1-dimmensional integeration because of the
symetric property of «vy(-). Thus the asymptotic variance is bounded by

v aﬁ[zz{/ Sl ‘”(t)dt}%],

(a,8)EA k=2 1=2

dM + d (A.6)

for a suitable constant d > 0. The integral term in (A.6) has Cauchy-Schwarz
bound;

[ ewa < ([ ebora) ([ ofera)’ wy

Now, the summation with respect to k and [ in (A.6) are separated and we have
terms inside summation over the set A ;

i( /bM(*1§>’°’(t))"’dt)%‘,:—'!c and i( /DM (’7(()1)(t))2dt>%f—: (A.8)

k=2 k=2

From the definition of the set A , we can see « and g have values depending on
h . To guarantee that the series in (A.8) have finite values for all h , the series in
(A.8) have to have infinite radii of convergence with respect to o and 8 which
is ensured by 1).
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