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Selecting a Transformation to Reduce Skewness
In-Kwon Yeo!

ABSTRACT

In this paper, we study selecting a transformation so that the transformed
variable is nearly symmetrically distributed. The large sample properties of
an M-estimator of transformation parameter that is obtained by minimiz-
ing the integrated square of the imaginary part of the empirical character-
istic function are investigated when a random sample is selected from some
unspecified distribution. According to influence function calculations and
Monte Carlo simulations, these estimates are less sensitive, than the normal
model maximum likelihood estimates, to a few outliers.

Keywords: Empirical characteristic function; Power transformations; Influence
function

1. INTRODUCTION

Many statistical techniques are based on assumptions about the form of the
population distribution. The validity of the results obtained depends, some-
times critically, on the assumed conditions being satisfied, at least approximately.
When these assumptions are seriously violated, a transformation of the data may
permit the valid use of these techniques. In this paper, the goal is to achieve a
distributional symmetry via the transformation.

When searching for transformations that improve the symmetry of skewed
data or distributions, it is helpful to recall the concept of relative skewness in-
troduced by van Zwet (1964). Van Zwet defines the distribution function G
to be more right-skewed (more left-skewed) than the distribution function F
if G™1(F(z)) is a non-decreasing convex (concave) function. According to van
Zwet’s definition, the right-skewness is increased if the transformation is convex,
while the right-skewness is decreased if the transformation is concave. Since a
non-decreasing convex (concave) transformation of a random variable effects a
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contraction of the lower (upper) part of the support and an extension of the up-
per (lower) part, it decreases the skewness to the left (right). It is also shown
that a convex-concave transformation preserves the ordering of the standardized
odd central moments, one of the best known measures of skewness.

Box and Cox (1964) considered a family of power transformations satisfying
this property. The Box-Cox transformation is, however, only valid for positive z.
Since it is assumed that the transformed variables are approximately symmetri-
cally distributed around an arbitrary center, the Box-Cox transformations may
not be applied, at least not with adding a data dependent translation parame-
ter. In this paper, the development is based on the extended family of power

transformations
{z+1)* =1} /> for z > 0,A #0,
_ ) log(z +1) forz > 0,A =0,
v 2) = —{(=z+ 1) -1} /2~-)) forz<0,X#2, (1)
~log(—z + 1) for z < 0,A =2,

which is introduced in Yeo and Johnson (2000). This family has properties similar
to the Box-Cox transformation. In particular, (), z) is concave in z for A < 1
and convex for A > 1. Note that (), z) reduces to the identity function when
A=1.

It is well known that the maximum likelihood estimator of transformation
parameter is very sensitive to outliers, see Andrews (1971). Carroll (1980) has
proposed a robust method for selecting a power transformation to achieve ap-
proximate normality in a linear model. Hinkley (1975) and Taylor (1985) have
suggested methods for estimating A in the Box-Cox transformation when the
goal is to obtain approximate symmetry rather than normality. In the follow-
ing sections, a robust method for estimating the transformation parameter X is
suggested by using the empirical characteristic function and the asymptotics and
influence of the estimator is investigated.

2. ESTIMATION METHOD AND ASYMPTOTIC RESULTS

To motivate the choice of the deviation measure, we recall a well-known fact
that a random variable X is symmetrically distributed around a location pa-
rameter u if and only if the the characteristic function with factor exp(—iut)
is real. Assume that, for some A, the distribution of the transformed variable
¥(A, X) is symmetric about a location parameter u. Let ¢, (), t) be the empirical
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characteristic function of transformed variables (), X1),..., ¥(}, X,), that is,

n
$n(X t) = n~! Zexp(itz/)()\,Xj)) = ¢en (A 1) +idsn(A, 1),
j=1

where ¢en (X, 1) = 71 305, cos(tp(A, X)) and dsn (X, t) = n~! 2= sin(tp(X, X;5)).
Yeo and Johnson (2001) propose to transform X according to ¥(A, X) and then
to select A and u to make the integrated square of the imaginary part of the
empirical characteristic function of ¥(A, X1),...,1¥(A, X,,) with factor exp(—itu)
minimized,

on(0) = / T {exp(~itu)éa(A )} dG (1)

= / [n—l f:sin {tp( X;) — ,1)}]2 dG(t),
j=1

where 8 = (01,60;) = (\, 1)’ and G(-) is a symmetric distribution function. Let
G(-) have a characteristic function v(-). Then, we can write

9072(0) = 21? Z E{VW)(X,X,)—1/)()\,XJ)]—V[¢()\,X,)+1/1()\, XJ) —'2“]}a (21)

i=1 j=1

since sin(z) sin(y) = {cos(z — y) — cos(z + y)} /2.

Let ¢(\,t) be the characteristic function of (A, X). The distribution of
(A, X) is symmetric about g if and only if Im{exp(—itu)@(A,t)} is zero. Hence,
it can be a proper estimating method to select the value @ which minimizes ¢, (8).
Usually, in a given instance, it may not be possible to select a A so that (A, X)
has a symmetric distribution. Nevertheless, we make that assumption. Recall
the Box and Cox (1964) assumption of normality and see Hernandez and Johnson
(1980) examples.

Let 8y = (Ao, s40)’ be the minimizer of p(6) = [ [Im {exp(—itu)d(), t)}]? dG ().
Assume that there is a compact set defined as

O={M\p)]a<Ar<band c<p<d}
over which the following conditions are satisfied:
(1) @9 is unique on O,

(ii) @ is an interior point of @,
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(iii) B{I x <o) (—X)*®™ log(~X +1)2] < oo and E{J{x>0) X% log(X +1)?] < oo,
(iv) V(0 —55—-2‘ =0,
6-6,

(v) V2p(8o) = (62?’ 6)
~ \ 99:99; |g_g,

) is non-singular.

Theorem 2.1. Let v(-) be the characteristic function of the distribution func-
tion G(-) with [t*dG(t) < oo, where G(t™) + G(—t) = 1 for all t € R and
G(t) — G(—t) > 0 for any t > 0. Denote 7(8,z1,z2) = v[Y(A, z1) — ¥Y(), z2)] —
VIB(A, 21) + (A, 22) — 20].

(1) on(0) =5 p(0) uniformly in @ € ©. Further () is continuous in 0.

(2) Assume condition (i). Then, @ = argmin,(8) converges almost surely to
6.

(8) Assume conditions (3)-(iv). Then, n'/?V,(8¢) is asymptotically distributed
with N(0,3(6y)), where £(6p) = Ex, [Ex, [V7(00, X1, X2) (VT(60, X1, Xz))’]]

(4) Assume conditions (i)-(v). Then, n}/2(8 — 8,) is asymptotically distributed
with N (0, V(80)=(80)V(8o)'), where V(85) = (V2p(8o)) ™"

Proofs.

(1) See Yeo and Johnson (2001).

(2) See Yeo and Johnson (2001).

(3) Decomposing n1/2V,,(8y), we see, from (2.1), that

-1

n2U1,(8,), (2.2)

n1/2V(pn(00) o 3/2ZVT(00, s

where U, (60) = (72’) 122;11 ok=j+1 V7(80, X;, Xi). The strong law of large
numbers ensures that the first term on the right hand side of (2.2) converges
almost surely to 0. The multivariate central limit theorem for U-statistics (see
Lee (1990), page 76) gives that n'/2U;,(8p) is asymptotically distributed with
N(u(60),4%2(8y)), where u(6g) = 2Vyp(0y) = 0 and

2(60) = Ex,[Ex, [(V7(60, X1, X2))(VT(0, X1, X2))]].
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Slutsky’s theorem allows to conclude that
n1/2V(,0n.(00) is asymptotically distributed with N(0, X(8,)). (2.3)
(4) Expanding n'/2V,,(8) about 8y, we obtain that
n?V o, () = n'/2V,(00) + VZpn (8)n%(8 — 6y),

where 6 = a0+ (1—ay)0) for o, € [0,1] and n > 1. Since n'/2V(8) = 0 at the
minimum when 8 lies in the interior of @, n1/2V, (8) — (= V2, (8))n/2(8—8,)
converges in probability to 0. From (2.2), V2, can be written as
n

V2pn(8) = (2n?)71 ; v%7(0,X;,X;) + %I-Uzn(e), (2.4)
where Uy, (0) = (5‘) - Z;’:—ll D k=it V27(8, X;, Xx). Applying the uniform con-
vergence by Rubin (1956) and the uniform strong law of large numbers for U-
statistic by Yeo and Johnson (2001), we conclude that V3¢, (8) converges almost
surely to V2p(@) uniformly in § € ©. Further, the limit function V2¢(8) is
continuous in #. Hence, using uniform convergence of V2, and the continuity
of V2 with almost sure convergence of @ to 6y, it is easy to show that

V20, (0) converges almost surely to VZp(6y). (2.5)

By Slutsky’s theorem along with (2.3) and (2.5), we conclude that nl/2(§ —
8) is asymptotically distributed with N (0, V(80)X(0¢)V(8y)'), where V(8) =
(V2p(80))~". O

3. EXAMPLES FOR THE WEIGHT DISTRIBUTION G

To gain some understanding regarding the choice of a weight function, we first
specify absolutely continuous weight distributions by their density. We consider
the weight density functions;

g(t) = (2m0?)~1/2 exp(—t?/(202)) —00 < t < 00,
g(t) = (2T(e)o®) " |t|]* exp(~[t|/0) —o0 <t < o0,
g(t) =1/(20) —-o<t<o.

These weight distributions satisfy the conditions in Theorem 2.1. Note that each
of the three weight distribution families is indexed by a scale parameter ¢ > 0,
SO we write

on(6) = ¢n(6,0) = [ $2,(6,1) dG(t,0),
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where ¢sn(8,t) = n™' 37 sin(¢(9(A, z;) — ). Since the weight distributions
above have finite high order moments, the contribution of some neighborhood of
the origin, —é < ¢t < 4, is almost equal to the whole integral when o is small. For
—§ < t < § such that § is sufficiently small, ¢2,(0,t) is successfully approximated
by simpler function, that is,

n
2
2.(0,6) = 2(n1 3w\, z;) — ) +O(t).
=1
Hence, if we take o small sufficiently, then, for small values of §,
n 2 J
onl8,0) ~ (17 S p0z) ~u)’ [ & d6tt0)
j=1 -

That is, for a wide choice of weight distributions, the particular choice negligibly
affects the estimation of A when small ¢ is used.

4. INFLUENCE OF OUTLIERS

The influence function serves to describe the effect of an outlier on estimation.
Let T be a functional. Then, the proposed estimator can be written as a function
T(F,) where F, stands for the empirical distribution function. The influence
function evaluated at a point zg is defined as

. T[1—-e)F +¢€d -T(F
IF((IJO,F) = lim [( E) +€ (330)] ( )’

e—0 &

where §(zp) is the probability measure which puts mass one at the point zy. In
the case where p = 0, 02 = 1, the influence function of the estimation method
proposed by Carroll (1980) is proportional to p(¥ (Ao, zo))1¥ ™ (X, z¢) where, for
some k > 0, p(a) = a if a < k and = sign(a)k otherwise and

WO0) = Shne)
{(z +1)*log(z + 1) — ¥(A,z) } /A for A # 0, z > 0,
log(z +1)%/2 for A\=0,z >0,
{(=z +1)2*log(—z + 1) + P(X,2)}/(2—A) for A # 2,z <0,
log(—z +1)?/2 for \=2,z<0.

When no transformation is necessary, i.e. Ag = 1, for a large deviation z from 0,
the influence function of the normal theory maximum likelihood estimator and
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Carroll’s robust estimator are proportional to sign(z)z? log(jz|+1) and z log(|z|+
1), respectively.
The proposed estimate A can be written as the solution to

d

Zon®) = [tf [ costewina)ua)aFio) |

| [sintewnu)ara) G =o.
For A = 1, the influence function of our estimation is proportional to

z log(|z| + 1)/t sin(ty) cos(tz) dG(t).

Since / |t sin(ty) cos(tz)|dG(t) < / |t|dG(t), applying a symmetric weight dis-
tribution G(-) having finite moments, e.g. standard normal, we see that the
influence function is proportional to z log(|z| + 1). It is shown that the proposed
estimate of A is also sensitive, but less sensitive than the normal maximum like-
lihood estimate, to an outlier. Also, it can be easily shown that the influence of
an outlier on estimating u is bounded.

5. SIMULATION

To compare the performance of the estimation and influence of outliers with
the normal maximum likelihood estimation, a simulation was performed. A series
of 10000 replications, of samples of size 30, were generated for A\g = 0.0, 0.5, and
1.5 where 9()\g, X) is normally distributed with its mean 0 and its standard de-
viation 3, N (0, 32). The normal weight distribution with o = 0.01 was employed.
Table 5.1 gives the simulated bias, standard deviation and mean squared error
of the two estimates for Ag. MSEC denotes the proposed M-estimate. Maximum
likelihood methods, see Yeo and Johnson(2000), perform well for all cases of the
normal distribution. When the single positive outlier ¥(Ag,z31) = 30 to each
data set was added, N(0,3%)+, we see that a large increase in bias is traded for
a small decrease in standard deviation, resulting in increase in MSE. Further,
the bias of MLEs is highly increased so that the MSE of MLEs tends to become
larger than that of MSECs. This implies that the MSEC may be less sensitive,
than the normal model MLE, to the outliers. An interesting result is that, as
Ao gets away from 1, both estimations tend to provide a more accurate estimate
regardless of the existence of outliers.
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Table 5.1: The Monte Carlo Bias (BIAS), standard deviation (STD) and mean
squared error (MSE) of estimates for MLE and MSEC. Based on 10000 replica-
tions, A\g = 0.0, 0.5 and 1.5, and sample size n = 30.

Ao = 0.0 Ao =0.5 Ao =15
MLE | MSEC | MLE | MSEC | MLE | MSEC
N(0,3%) BIAS | 0.020 | -.005 0.010 { -.008 | -.012 | 0.002
STD {0.086 | 0.132 | 0.123 | 0.169 | 0.124 | 0.169
MSE | 0.008 | 0.017 [ 0.015 { 0.029 | 0.016 | 0.029
N(0,3%)+ | Bias |-.125 | -.109 -.339 | -.191 -.391 | -.223
STD | 0.018 | 0.087 | 0.059 | 0.112 | 0.095 { 0.120
MSE | 0.016 | 0.019 | 0.119 | 0.049 | 0.162 | 0.064
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