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The Filtered-x Least Mean Fourth Algorithm for Active Noise
Cancellation and Its Convergence Behavior

Kang Seung Lee* Regular Member
ABSTRACT

In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power
of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian
measurement noise. Application of the filtered-x LMF adaptive filter to active noise cancellation (ANC) requires
estimating of the transfer characteristic of the acoustic path between the output and error signal of the adaptive
controller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of
the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two
distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be
strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior

can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

I. Introduction

In active noise cancellation, the acoustic noise
to be cancelled is often generated by rotating
machines and thus can be modeled as the sum of
a fundamental sinusoid and its harmonics. In this
paper we are concerned with cancellation of fan
noise based on ANC filtering. Fan mnoise is
frequently generated in the consumer electronic
products such as air conditioners, vacuum ‘cleaners
and so on. Adaptive approaches have widely been
used in ANC applications in which the unwanted
noise sound is adaptively synthesized with the
equal amplitude but opposite phase, resulting in
the cancellation of the acoustic noise as shown in
Fig. 1% I Fig. 1, the input microphone can be
replaced by other non-acoustical sensors such as
tachometers or accelerometers in which case the
possibility of the speaker output feedback to the
input microphone is removed. The adaptive filter
output drives the loudspeaker in such a way that

the acoustic noise and the loudspeaker output can
be summed to null at the error microphone.
Although any adaptive algorithm can be used in
Fig.1, the least mean square (LMS) algorithm has
been the most popular one®?. It has recently
been found that the LMF algorithm in which the
error raised to the power of four is minimized

7 1t is noted,

has better convergence properties
however, that the direct application of the LMS
algorithm in Fig. 1 is not appropriate. The reason
is that the acoustic path between the filter output
and summation point of the error signal is
frequency sensitive, which acts to distort the
phase and magnitude of the error signal.

In turn, the distortion of the phase and
magnitude in the error path can degrade the
convergence performance of the LMS algorithm.
As a result, the convergence rate is lowered, the
residual error is increased, and the algorithm can
even become unstable. For these reasons, it is
necessary to use the so-called filtered-x LMS
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Fig. 1 Basic adaptive active noise canceller configuration.
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Fig. 2 Rearranged form of the canceller under linear
system condition.

algot‘ithm[sml for which the transfer characteristics
between the output and the error signal of the
adaptive canceller must be estimated.

In this paper, we propose a new filtered-x
LMF algorithm for active cancellation of fan
noise. It is noted that the fan noise can be
modeled as the sum of a fundamental sinusoid
and its harmonics. We first derive an adaptive
canceller structure and then analyze its
convergence behavior when the acoustic noise can
be modeled as the sum of a fundamental sinusoid
and its harmonics. The convergence analysis is
focused on the effects of parameter estimation
inaccuracy on the performance.

Following the introduction, we give a brief
description of the underlying system model in
Section 1II. The results of the convergence
analysis and the simulations are presented in
Sections Il and IV, respectively. Finally we
make a conclusions in Section V.

Measurement
Noise

il e(m)
T Error

Adaplive Canceller M

Fig. 3 The diagram of adaptive active noise canceller
system under study.

. ANC System Model and
Algorithm ‘

Since the loudspeaker-air-microphone path of
Fig. 1 is linear, one can easily get the equivalent
system as shown in Fig. 2. When the noise
consists of the multiple sinusoids, which is the
case of fan noise, the acoustic and loudspeaker-
acoustic-microphone can be described by the
multiple in-phase ( I') and quadrature (Q) weights
as shown in the upper branch of Fig. 3.

For the m-th sinusoidal noise, the adaptive
canceller structure also becomes to have two
weights w;,(n) and wg,(n), with I and Q
inputs, x;,(n) and =xg,(n), respectively. Thus
the output of the m-th canceller, y,(i) Iis

expressed as
) ={ w1 Zp () + 2 w(Mwon(m} (D)

where

Zrm(m=A, cos(wpn+ ¢,) 2 A, cos ¥, (n),
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xgm(W=A,sin(o,n+ ¢,) 2 A,sin?, (n),
m : branch index = 1, 2, 3, ..., M,
n : discrete time index,
A 1 amplitude,
@ : normalized frequency,
¥ : random phase.

Also, referring to the notation in Fig. 3, the
error signal e(n) is represented by

o) = 32 [eam Gum(n) + com San(m]+ 2(n)
=— ijIAm[ 1 mc0s Tnl#) + comsin Tl 1) Hawg, mln) — w] m}

- ;;llAm[ 1 m SN T 1) — €y €08 T ) H{wg (1) — W, m}

+ 7(n) @

where

S & &) = B {dm) — yulm) ),

éo(m) : 90" phase-shifted version of &;(n)
7(%) : zero-mean tmeasurement noise.

Assuming that @;,(#) and wg,(n) are
slowly time-varying as compared to x;,(x) and
x o.m(n), the phase-shifted output is giver from

1) by

$a(W = 3 () 50 m(n) ~ wo.n() 51,n()

= mglAm{wLm(n) sin¥,,(n) — wg,m(#) cos ¥, (n)}.
3)

It can be shown from (1), (2) and (3) that
minimizing the fourth power error and using a
gradient-descent method yields™ a pair of the
filtered-x LMF weight update equations for each
m as

Wk 2+ 1) = 1w (1) +2 1 (DL€ 11 + Co,m K, m( 1)}
Womn+ 1) =g u(1) +2 ttyy &) {CL 1y ¥l ) — Co,m X1 )}
@
where gm is a convergence constant.
It is noted that to implement the filtered-x
LMF algorithm of (4), the values of ¢,,, and

comn must be estimated. In the following, we
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analyze the effects of replacing ¢;, and
com Im (4 with ¢, and ¢,p, on the
convergence behavior of the canceller.

In the following, we analyze the convergence
behavior of the mean and summed variance of
weight errors of the filtered-x LMF algorithm

using a new analysis method.

I. Convergence Analysis

A. The mean of weight serror
(Magnitude)

To see how the adaptive algorithm derived in
(4) converges for inaccurate ¢y, an Cq,. We
first investigate the convergence of the expected
values of the adaptive weights. To simplify the
convergence equation, we may introduce two
weight errors as

7)I,m(n) = w[m(n) - w;,m:

yQ,m(n) 2 me(”) - wz.m' (5)
Then, from (2), (5) and Fig. 3, we get

Erm(m) = = vpn(1) x7m(B) — vo (1) xgm(m),
EQ,m(n) = - Ul,m(n) xQ,m(n) + UQ,m(n) x],m(n)-

(6)
Inserting (5) into (4), we have

Vi (n+1) =0, (0) +2#m@3("){ gl,mxl,m(") + EQ,me,m(n)}s

Vom{n+D =00, (%) +2u, (W) { Cprgn(n) — Comxrn®).
@

Rearranging (7) with (2) and (6), taking
expectation of both sides of the resultant iwo
weight-error  equations, we can get the
convergence equation based on the independent
assumption on the underlying signal
(), 21, vy ,(n) and vy, (n).

The moment terms of order greater than 1
decrease much faster than the first order moment
term in Elv;,(»)] and Elvg,, (n)].

ignoring the moment terms of order greater than

Therefore,

1, the convergence equation becomes
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[E[Ulm(n+l)] - [ ﬁm E[Ulm(n)]
E[”Q,m(n‘*—]-)] N “Bm [P E[”Q,m(n)]:'
where

Ap2l— 3p,A% 8, 8.05c08 A0, ,,,
B2 31, AL g, BnoosinAl,, .

Here, defining gain and phase response parameters
as

14

,l 2 2

Em CI,m—i_cQ,m >

~ f ~ 2 A 2
Em = Cl,m + CQ,m >

- -1 (Co
Hc,mz tan ( m) ’
Crm

Do 2 tan (—Somy
Crm
A‘%:,mé Hc,m - /gc,m .
Now, using the similarity transform to make
Elv;,,(w)] and E[vg,,(»)] in decoupled forms,

(8) can be expressed as follows.

El 0y m(n+1)]] [1=Azn 0 El 97, (9)]
E EQ,m("+1)] [ 0 1—Ag | [ El 27Qm(%)]
(&)

where

Am =3 AL g, T il cOSAD,,, ¥ jsinad, ), i=1Q.

Since A;, in (9) is a complex number, the
transformed weight error is also complex. When
a complex number is given, we consider its real
and imaginary parts individually or investigate the
convergence of magnitude of transformed weight

€rror.

|E [0t DI = 1= Al [ELoi ], i= L Q.

(10)

As it is clearly seen in(10), the magnitude of
weight error converges exponentially to O under
following conditions.

[1=2im| <1 VYin i=1 @ an

Squaring both sides of(11) and rearranging the

terms, the stabilizing condition are obtained.

A
0 < uy < 2 cos ‘2””

m or () < Kom 5 <1 (12)

where

9 A
x a S#NZA"lgm gmd%
mf = 2co8 Al

We see that stabilizing condition of {12), unlike
the filtered-x LMS, is affected by variance of
measurement noise signal'’"'?.  In a sufficiently
large time constant r domain, time constant ¢
for exponential convergence can be simplified and
is derived[3].

evl/r,,m = 1— L = \1_Az',ml »

Tiym

i=1, Q. (13)

From (10) and (13) the time constant is

_ 1
1V 1= 6mALgy 80?05 20, +91EALS, 2y 0

o

L i=1Q

1
. 14
1“\/1‘4%,,,,// (1—meyf) COSzAﬁc,m ( )

B. Summed variance of weight errors
Next we investigate the convergence of the

mean-square error (MSE), E[&*(w)]. Using (2)
and (6), we can express the MSE as

Elén] = 3w + o

:% mgl A?’” ‘fm(ﬂ) + O% (15)

where

En(m) 2 E[4%,, (w14 Elvh . (m)],

o 2 El7 (n)].

From (15), we find that studying the
convergence of MSE is directly related to
studying the sum of £,(#). Inserting (1) and (2)
into (5), and assuming that input signal x,(#),
measurement noise 7(#x), and weight errors
vrm(#), vgm(n) are independent of each other,

we take the statistical average of both sides to
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obtain  two E [W(n+D)],

E[v%4 (n+1)]. Since there two equations are

equations  for

symmetrical, we add them and assume that
E[¥:, n+D]=E [vh ., (n+D]. Thus,
eliminating the subscripts 7 and Q to simplify the
second moment equation of weight error and

reaﬁanging the terms yields

Ev}(n+1)]

= 22458 2, ELS(M 1+ 3B Elh(n])
— 2 e Al s B 08 20, { Bl (] + (EL(m]? }
+48 2 AL g & L0 M ELob(m)] + (EL o (D))

+{1 —6p,A% g, Zm ElP(m)] cos 26, ,
+ 3044, Ak g2 By EL7' ()]} ELob(m)]

+2454A% 8, E2 (). (16)

Assuming that 7(») is a Gaussian with zero

average and w;,(n), wqg.(n) are Gaussian

variables, is also a Gaussian variable.

V(1)
Thus, (16) can be simplified by expressing
E [ (w)] as E[¢% (n)] Although E [v, (#)]
decreases very rapidly, it is no zero from the
beginning.  Thus, a Gaussian random variable
Aw,, (n) with zero average, and its variance are

adapted as follows:

EL o (m)]=Voln) + 0% (w) a7

where

V,(n) 2E v, (n)],
0% () 2E[ a%w,(n)].

From (17), we find that during the transient
state, ie. from beginning to the moment just
before the steady state, p%(#) is much smaller
than V%(x) and E [v, ()] can be regarded as
V2(n). On the other hand,

dominant over

02(n) becomes
Vi(n) in the steady state and
E [v,, (#)] can be regarded as p% ().
apply (17) to (16) and use

Now, we

the relationship
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between E [0 (w)] and E[o% (w)] of the
Gaussian random variable[13] to arrive at the
following equation.

V2(n+ 1)+ p%(n+1)

=545 A% Bn (Vo) +90%(m) Viln)

+ 18 03(n) V3n) + 6 05(m) }

~Bun AL, & G €08 20, — 4505, AL gy 30 0)
AV + 4 05(m) VE(m) + 2 05(m)}

(1 =64y A% g Bm B COS A0, + Nt AL S B
A VA(n) + 05(m)}

+3045,4% 8, .. (18)
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Fig. 4 Dominant term decision diagram for filtered-x

LMF algorithm of summed variance of weight
errors at the transient-state.
fpoint (a) : 4£,,=0.3 and ¢2=(.1. point (b) :
#yp=0.2 and Z=0.5. ]
(1) Convergence during the transient
state
The convergence equation (18) may be
examined for two different cases. First, o2X(n)

and the last term of (18) can be removed for the

transient state. Thus, the transient convergence

equation is given by
Viln+1D) =505 A% &5 2 Vi)
~BunAb 8 B cos 80, ~ 1515, A% 8L B 0) Vi(n)

+(1~6 AL 8 B 0icos 20, it Wit Al B 0f) Vi)
(19)

2
o)
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On the right side of (19), either V8(») or
V2(%) becomes a dominant term in extreme
cases. When the two terms have same values,

we can write 12(x) as follow

VZ _\} 1= 6upALg, 8ndhcos 58, + Wit AL gl 2,
m, th .

B AL B

(20)

Note that A4, does not affect V2, ,. In (19),
the first term  V8(») acts as the dominant term
when V%(w) is greater than V2, ,. If VA is
smaller than V%, ,, then the last VE(x) term
becomes dominant. Fig. 4 is given to illustrate in
terms of the convergence constant xm and the

variance of measurement noise o2, which of the
two terms, the first term V% (») and the last term
V2,(n), is dominant when V2 ,(») = 0.8. Point (a)
is ja region in which the term V5(#) dominates
ovér the other and point (b) is when VZ(x) term is

the dominant one. Therefore, the transient
convergence equation (19) can be written as:

b ALl & Vi(m)
VI > Vi u (21a)

2 ~
Valnt D21 (161, A%, Bnicos 56,
+9045,A%8% By 0h) Valn)

VA K Ve (20D)

Now, from (21a) we may derive the conditions
for stability and the time constant by rewriting it
as
) = (5u2 A% 2.0 T ()
-1 4.3 5 12 3"

- \/EﬂmAﬁﬂgfn §m {\/gﬂmAmgm Em Vm(o)} .
(22)

Thus, (22) is stable under the following condition:

| V5 A% g5 20 VEO) 1< 1,

1
0 < s AL 2 VA0 @3

Note from the conditions for stability in (23)
that the initial value of weight error acts as a

limiting factor, along with the amplitude of input
signal, the gain of the secondary path and the
estimated gain of the secondary path. And, (21b)
is stabilized when it satisfies the condition below;

cos Al .,
D Al g T e
24
where
A lsﬂFx,mA%ngm §m OZQ
x =3
i cos &b, ,, :

From (13) and (21b), the time constant is given
by;

1
B AL G B 02 {COS A — 150y Al B Bm 0}

Tm,s =

_ 5
zxm,s COSZAac,m{l_xm,x} ) (25)

(2) Convergence in the steady state

In the steady state, V(%) becomes sufﬁciefltly
small and the terms that include p%(#) and
o8(n) can be ignored in the convergence

equation (18). The equation is then simplified as

o+ 1) =(1 =641, AL g Em0% COSAD,
+ 9045, AL & B o) 05

+ 304445 8. o (26)

And, the summed variance of weight errors in
the steady state, &,(o°) is 2p,, () and it can
be wriiten as

104 8m 05

gmlcos 20, =150, A% L, En 05}
_ 2 0%1 Xom,s

BAEngzm{l_ xm,s} ’

Em(oo) = me(oo) =

@7n

(3) Comparison of the filteredx LMF
(FXLMF) and filtered-x LMS(FXLMS)
algorithm

Comparing the performance of adaptive

algorithms usually involves two methods. The
first method is to compare the state of
convergence after setting equal values for the
steady state, and the other one involves
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comparing the steady state values for same rate
of convergence.

Like (18) in [12] the summed variance of
weight errors of the FXILMS algorithm is a
geometric series and the time constant can be
defined while that of the FXLMF algorithm (18)
is not a geometric series and therefore, the time
constant may not be defined. Then we set the
steady state values of the two algorithms equal
and compare the convergence rates. From (27)
and (20) in [12] we obtain following equation.

-~ 4
10 4 mrxrir) Em Oy
Em {COS A ac,m_ 15#m(FXLMF) Agngm gm 6?7}

Hom( FXLMS) §m 0'?}
(€08 A O =T Homirczisy A B (9= c0826,,,))

28)

where p,exrum a0 f s are the convergence
constants of FXLMF and FXLMS algorithms,
respectively.

When the convergence constants s, pxram and
Umrxiys Satisfy the stability conditions, the
second terms on both sides of (28) are
sufficiently smaller than the first terms and they
are ignored to yield the following equation.

L ‘
M FXLMF) = iSXOLzMS) . (29
7

V. Computer Simulations

In this section, we present the results obtained
from computer simulation along with the
theoretical analysis of FXLMF algorithm in the
previous section.

We set the frequencies of the first and second
sinusoidal signal at 120 Hz and 240 Hz,
respectively, and selected 2 KHz for sampling
frequency.  The input signal x(») and desired

signal d(#) are given by

x(n) = mi:lAm cos(wun+ ¢nm)

=V2 (cos(BREE + 4+ cos(BHLE + 4,)),
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AW = 3wty + W nron)

=0.6x1,1(7l) - O.IXQ,l(n) —+ 0.3x1,2(n) - 0.3xQ,2(n)-
(30

The secondary path is modeled as g,=g;=1,
6.,=—45 and 6,.,=45 . The simulation was
carried out by setting 0.001 and 1 as the
variances of measurement noise o5 . And the
initial value of weights is zero. The simulation
averaging 1000 independent runs.

Fig. 5. showed the summed variance conver-
gence curve of weight error for the FXLMF
algorithm that resulted from the simulation when
turxum = 0.2, o = 0001, and |Ag,,|=15
We see that 17(z) is the dominant term during
the transient state whereas ©%(») becomes
dominant during the steady state.

Fig. 6. showed the

convergence curve of weight error that resulted

summed  variance

from the simulation when the phase estimation
error |A6,,| is (1) 0°, (2) 45° , (3) 60° , (4)
75° under the same value in the steady state. It
can be seen that the larger phase estimation error
is, the slower the convergence speed is, and that
the steady-state value is not affected by the phase
estimation error |A ¢

c,ml

&
-10 oooocooco ¢+ Vi A(m)
' bt 2
201 o
i)
=
9-30
3
D anf
2 +,
| it
-50
##4#;# Qﬂbj{bﬂu
Py, iy
60 't}-+ o Y N -I;}_+
Y@ i A
o o0 oD
o 0o 0 foS53)

1000 2000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 5 Leaming curves for filtered-x LMF algorithm of
summed variance of weight errors when the
convergence behavior are divided between V,(n)
and o*(n)

[ eyesomm = 0.2, =0.001, and |20,,1=15"] ]
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Fig. 6 Learning curves for filtered-x LMF algorithm of
summed variance of weight errors. [ uy(sxzam = 0.2

and 02,7 = 0001 ] (D126, =0 .2 146,
=45 .(3) 126,,] = 60° . (&) |ag,,| =75

We have compared the convergence behavior of
FXLMF algorithm -and that of algorithm FXLMS
through simulation. The convergence speed of
the two algorithm were compared after setting the
steady-state values equal. The convergence
constants of FXLMF and FXILMS algorithm were
carefully chosen so that they satisfy the conditions
given in (29) for a given variance of measure-
ment signal. To be specific, we selected 0.2 and
0.0002 for gy to make the steady-state values
of two algorithm equal when 4 is given as 0.001

and 1 and g gy is 0.002.

0

\\
=10 : FXLMF
(( \\\ - - - - :FXLMS
204, o . 1
Iy AN o - ) ' -
=..30 Ny 1
% ~
@ a0l \\\
° N
501 \‘T\‘m«.\; oy
8 e
B0}
-70

1000 2000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 7 Comparison of the FXLMS and FXLMF
algorithm learning curves of the summed variance
of weight errors.

(@) 2 (rxzny = 0.002, £ rxramn =0.2,,

2=0.001, (46, =45 and V%=0.558

(b) £ ¢rxrasy=0.002, £ (rxmm =0.0002,
=1, |88,4=45", and V}=>558.

In Fig. 7, the convergence behavior curves of
summed variance of weight error obtained from
simulation are compared with each other when the
phase estimation error {s4,,l is 45° . It has
been newly found that for some region of
2 and o, resulting in sufficiently small v values
compared to unity as the curve (a) of Fig. 7, the
initial convergence of the FXLMF algorithm is
much faster than the conventional FXLMS
algorithm, Later on, the FXLMF convergence
looks similar ‘to the FXILMS case. On the other
hand, when V% is large as the curve (b) of Fig.
7, the FXLMF algorithm converges geometrically
at a rate a bit slower than the FXLMS case.

V. Conclusions

The convergence result of the filtered-x LMF
algorithm indicates that the effects of the
parameter estimation inaccuracy on the conver-
gence behavior of the algorithm are characterized
by two distinct components: Phase estimation
In particular, the
convergence has been shown to be strongly

error and estimated gain.

affected by the accuracy of the phase response
estimate. Also, it has been found that the mean
square convergence behavior can differ depending
on the power of Gaussian measurement noise and
the size of convergence constants.  Accordingly,
the transient behavior can be characterized by one
of the two cases: (1) initially, the filtered-x LMF
algorithm  converges much faster than the
filtered-x LMS, but soon after that, it converges
almost linearly on logarithmic scale like the
filtered-x LMS algorithm; (2) the filtered-x LMF
algorithm converges linearly and at a slower rate
than the filtered-x LMS. To sum up, different
convergence behavior was observed depending on
the variance of Gaussian measurement noise and
the magnitude of convergence constant.
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