Robust Observer Design for SDINS In-Flight Alignment

스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성

  • Yu, Myeong-Jong (Dept.of Electric Computer Engineering, Seoul National University) ;
  • Lee, Jang-Gyu (Dept.of Electric Computer Engineering, Seoul National University) ;
  • Park, Chan-Guk (Dept.of Control Instrumentation Engineering, Kwangwoon University) ;
  • Sim, Deok-Seon (Dept.of Electronics Electric Engineering, Chungang University)
  • 유명종 (서울대학교 전기 컴퓨터공학부) ;
  • 이장규 (서울대학교 전기 컴퓨터공학부) ;
  • 박찬국 (광운대학교 제어계측공학과) ;
  • 심덕선 (중앙대학교 전자전기공학부)
  • Published : 2001.08.01

Abstract

The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

Keywords

References

  1. R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, Inc., 1992
  2. J. A. Farrell and M. Barth, The Global Positioning System & Inertial Navigation, Prentice-Hall, 1999
  3. G. M. Siouris, Aerospace Avionics System, A Modern Synthesis, Academic Press, 1993
  4. A. Weinreb and I. Y. Bar-Itzhack, 'The Psi-ang error equation in strapdown inertial navigation systems,' IEEE Trans. on Aerospace and Electronic Systems, vol. 14, no. 3, pp. 539-542, May, 1978 https://doi.org/10.1109/TAES.1978.308617
  5. D. Chung, J. G. Lee, G. C. Park and H.-W. Park, 'Strapdown Ins error model for multiposition alignment,' IEEE Trans. on Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1362-1366, Oct., 1996 https://doi.org/10.1109/7.543857
  6. M.-J. Yu. J. G. Lee and H.-W. Park, 'Comparision of SDINS In-Flight alignment using equivalent error models,' IEE Trans. on Aerospace and Electronic Systems, vol. 35, no. 3, pp. 1046-1054, July, 1999 https://doi.org/10.1109/7.784073
  7. M.-J. Yu. H.-W. Park and C. B. Jeon, 'Equivalent nonlinear error models of strapdown inertial navigation system,' In Preceedings of the AiAA 1997 GNC Conference, Aug., 1997, AIAA Paper 97-3536
  8. M. Boutayeb and D. Aubry, 'A strong rracking extended kalman observer for nonlinear discrete-time systems,' IEEE Trans. on Automatic Control, vol. 44, no. 8, pp. 1550-1556, Aug., 1999 https://doi.org/10.1109/9.780419
  9. K. Rief, F. Sonnermann and R. Unbehauen, 'An EKF Based nonlinear observer with a prescribed degree of stability,' Automatica, vol. 34, no. 9, pp. 1119-1123, 1998 https://doi.org/10.1016/S0005-1098(98)00053-3
  10. K. Rief, S. Gunther, E. Yaz and R. Ungehauen, 'Stochastic stability of the discrete-time extended kalman filter,' IEEE Trans. on Automatic Control, vol. 44, no. 4, pp. 714-728, April, 1999 https://doi.org/10.1109/9.754809
  11. K. Rief, F. Sonnemann and R. Unbehauen, 'Nonlinear state observer using $H_{\infty}$-Filtering riccati design,' IEEE Trans. on Automatic Control, vol. 44, no. 1, pp. 203-208, January, 1999 https://doi.org/10.1109/9.739140
  12. K. M. Nagpal and P. P. Khargonekar, 'Filtering and smoothing in an $H_{\infty}$ setting,' IEEE Trans. on Automatic Control, vol. 36, no. 2, pp. 152-166, Feb, 1991 https://doi.org/10.1109/9.67291
  13. U. Shaked and Y. Theodor, '$H_{\infty}$-Optimal estimation: a tutorial,' Proc. of the 31st Conf. Dec. and Contr., pp. 2278-2286, Dec., 1992
  14. M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall, 1996
  15. B. Hassibi, A. H. Sayed and T. Kailath, 'Linear estimation in krein spaces-Part Ⅱ: applications,' IEEE Trans. on Automatic Control, vol. 41, no. 1, pp. 34-49, Jan., 1996 https://doi.org/10.1109/9.481606
  16. X. Yu and C. S. Hsu, 'Reduced order H filter design for discrete time-variant systems,' Int. J. Robust and Nonlinear Control, vol. 7, pp. 797-809, 1997