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A Study on Singularly Perturbed Open-Loop Systems by Delta
Operator Approach

Kyu-Hong Shim and M. Edwin Sawan

Abstract: In this paper, the open-loop state response of the two-time-scale systems by unified approach using the 3-operator is pre-
sented with an example of the aircraft longitudinal dynamics. First, the 8-operator system unifies both the continuous system and the
discrete system simultaneously, and the -operator approach improves the finite word-length characteristics. This saves more comput-
ing time than that of the discrete system. Second, the singular perturbation method by block diagonalization reduces the sizes and
orders of the systems. This also reduces the floating-point operations (flops). The advantage of those two approaches is shown by
comparing our results with the earlier ones in the illustrative example of the longitudinal motion of F-8 aircraft.
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I. Introduction

The two topics are covered in this paper: One is the unified
approach using the Jd-operators to improve the finite word-
length characteristics. The other is the matrix block diagonali-
zation to reduce the sizes and orders of the two-time-scale
systems.

1. The unified approach by using the 3-operators

The discrete models are written in the form of the shift (g)
operators. But, equations of the discrete systems by the g-
operators are not simple like those of the continuous systems
by the operator, d/dt.  The §-operator system unifies both the
continuous system and the discrete system. In other words, the
equation of the d-operator system represents both the continu-
ous and the discrete systems simultaneously. As the sampling
time A in the d-operator system approaches zero, the unified
system becomes the continuous system. Therefore, the §-
operator system includes the whole characteristics of the dis-
crete system and can be handled like the continuous system.
The easiness of handling the 3-operator system means to re-
duce a number of equations in the discrete system.

The normal g-operator systems have the problem of crowd-
ing poles within the boundary of the stability circle at small
sampling time and the difficulties of the truncation and round-
off errors. If the discrete system is converted to the 3-operator
system, the problems mentioned above are disappeared since
the resolution of the stability circle is increased. Moreover it is
the 6-operator system that has the finite word-length characteris-
tics improved compared with the g-operator system [6] [12].

Therefore, the 8-operator approach reduces the computing
time of the discrete system; thus, improves the quality of the
on-lined operating systems that requires higher accuracy. The
analytical work of the unified approach using the 5-operators
was fully founded by Middleton and Goodwin [13]. Li and
Gevers {7] showed some advantages of the 3-operator state-
space realization of the transfer function over that of the g-
operator on the minimization of the roundoff noise gain of the
realization. They studied that the 8-operator implementation is
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a special case of residue feedback. Li and Gevers compared
the S-operator with the g-operator state-space realizations in
terms of the effects of the finite word-length errors on the ac-
tual transfer function[6]. They showed the parameterizations
in the d-operator yielded a superior sensitivity performance
over those in the g-operator. Bouslimani er a/. investigated the
monotoninicity properties of the solution of the Riccati
equation using the S-operator formulation [1]. Naidu er al.
presented an application paper for the H, and H, optimal
control of a hypersonic vehicle by the &-operator approach
[18]. Shim and Sawan explored the Linear Quadratic
Regulator (LQR) design in the singularly perturbed systems
by the d-operator approach [19].
2. The singular perturbation method

Many dynamic systems have the fast and the slow varjables
in them. This means that there exist the higher and the lower
frequencies of the state variables in the systems. When the
system eigenvalues gathered by two groups, it is called the
two-time-scale system. It is computational burden to solve
such fully coupled equations of the two-time-scale systems.
Matrix block diagonalization technique is a powerful tool to
solve such a problem of the singularly perturbed models be-
cause it reduces the sizes and orders of the system [2]-[4]. The
method is called the singular perturbation technique and it
decouples the two-time-scale systems into the slow and fast
subsystems with a quasi-steady-state approximation. Koko-
tovic et al. {5] and Naidu [16] made large contributions in the
development of the singular perturbation methods for the con-
tinuous systems and the discrete systems, respectively. Naidu
and others studied and applied the singular perturbation ap-
proach in the flight dynamics [14]-[18].
3. Contribution of this paper

Naidu et al. extended the singular perturbation method from
the two-time-scale continuous system to the two-time-scale
discrete system [14]-[17]. In this paper, we explored to extend
the singular perturbation technique to the 3-operator system.
The result of the 6-operator solution is compared with the
result of the g-operator solution of Naidu ez al. [14]-{17]. An
improved result by the 3-operator approach is obtained and
illustrated in the simulation figures.

I1. Delta operator
Consider a linear and time-invariant continuous system
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x = Ax(t) + Bu(t), H

where x is a n x | state vector and u is a  x | control vector.
A is a n x n matrix and B is # x r matrix. The corresponding
sampled-data system with the zero-order hold (ZOH) and
sampling interval A is given by

x(k+1) = A4 x(k)+ B u(k),
k) =C x(k), @

A

where 4, =e¢™, B, = J.e‘M’”BdT.
0
According to Middleton and Goodwin, the delta operator is

defined as follow [13]:

s=la=h

3
A 3)

Assumption 1: The delta operator is identified in terms of
the g-operator in (3).
Proof: Given the continuous-time and discrete-time state
equations as
X = Ax + Bu,
Yo =Ax +Bu, (4)

The shift operator q is defined as

gx(k)= gqx,
x(k+1)

i

= X
= Ax +Bu,.

Now, the delta operator 8, working for both the continuous
and the discrete systems, is introduced as follow,

Sx, = XHIA_ X
qx, — X,
= —F 5
A (5
X(AA+ A)— x(kA) (g—1Dx,
A A

Therefore, (3) is proved [13].
Assumption 2: Show the parameter identities of the -
operator and the 8-operator in (6) and (7) as in (8).

gx = A x(k)+ B u(k),

y(k) = C x(k). (6)
oxX(7) = Asx(7) + Bsu(r),
vik)=Cyx(k). (N
A -1
A, =(—"——), B, :fi, C,=C,. (®)
A A

Proof: One can write the state equation in the delta form,
which represents both the continuous and the discrete systems
as (7). Substituting (3) in (7) gives

Xy = A;x; + By, 9)

Using (6) for q results in

[4,+B, (ux;N]-1
A

X, = A;x, + Bou,.

4

B
4 -1
A X +X’(ukxk VX5 = Agx, + Byug. (10)
Therefore, one has the identities in (8). Note that all the pa-
rameters Cs remain same as

y=0Cx,C=C =C;. y=Cyx;, y=Cx,, an

Also note that the 8-operator system contains all the sub-terms
of the corresponding discrete expression.

Assumption 3: The parameters between the continuous
system and the delta system are identified as

A4, =QA, B, =Q8B. 12y
where
A 242
Qz—l—je‘“dr = [+@+(A_3A_)_+ (13)

O

Therefore, as A goes to zero, Q becomes the identity matrix:

o Aq—[
2 A
4A
e —1
= e 14
A (14)
2 342
= A_*,(ié_)..{_(_A_A_)_+
2! 3!

Therefore, as A approaches zero, A, is identified to A.
Remark 1: When a truncated power series is used to
evaluate the matrix exponential as

o™ = 'Z___’ (15)

selection of the sampling time A asin || A4}, should not be

close to 1 because of the numerical difficulty for computing
this finite power series. (16) is a comprehensive expression of
the state space equation that involves the continuous, the dis-
crete, and the delta equations. This is called a unified approach
using the -operators in the Middleton and Goodwin [See pp.
44-45 for an example in Ref. 13].

px(r)=A,x(r)+ B u(r),

W) =C x(7). (16)
A B d/dt t
A,=4,¢, B,= {B,t, p= q . t=xk
Ay By ) Ty

It is noted that the first rows, the second rows and the third
rows of A, B . p and t denote the continuous sys-

n? ne
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tem, the discrete system and the delta system, respectively.
When A — 0, then AS—A, B6—B. This means that, when the
sampling time goes to zero, the discrete-like & system becomes
identical with the continuous system. Now the stability regions
for various operators are introduced. For continuous systems,
the operator is d/dt and the transform variable is 5. For discrete
systems, the operator is q and the transform variable is z. For
unified systems, the operator is 8 and the transform variable is
7. The stability regions are as follows:

Case of the continuous system: Re(s) <0,
Case of the discrete system: |z} <1,

A
Case of the delta system: EM +Re{y} <O0. (17)

As A approaches zero, the stability inequality of the unified
case equals that of the continuous case.

I11. Open-Loop response for singularly perturbed
systems
1. Unified Systems
Consider the linear system (16) and assume that the system
satisfies the condition (17), then we can write the two-time-
scale system as

x(t Ay, Ay, || x(r B;
]:,0 ( ):l:{ 511 o|~:|[ ( ):l+[ hl]u(z_)’ (18)
&pz(7) Asyy Asy [ 2(7) B,
where x and z are n and m dimensional state vectors, u is an r
dimensional control vector, and A&fj are matrices of appro-

priate dimensionality. Also, it is required that As,, be non-
singular. System (18) has a two-time-scale property, if

0< |A,] < A,

<A, < T1An < 1A, (19)
< A, < {2/A4,
e= A, [/ A,] << 1,

where A denotes eigenvalues of the system. So, we have

A (As )1 << T A (45 ) 1

max

If the norm properties of the invertible matrices are used, this

can be equivalent to
| Ay [ << {4, (20)

Now, we need to de-couple the system (18) into the slow and
fast subsystems.
1.1 Block diagonalization [2]-[4]

For decoupling the system (18), rewrite the equations as

x(v)=( —M,L)Hx(r)- M z(7),
z (r)y=Lx(z)+ 15, 2(7). (21)

From (21) the slow and fast subsystems are obtained as,

[px(r)} - [A"" 0 }[X(T)J + [ B, }u(r), (22)
pz(7) 0 Ay |l z(n) By,

where

A5, = Ay, — ALy, Ao'/ = Ay + LA,
B, =B, -M,B,,-M,L,B,,, B, =B,,+L,B

af a1

(23)

Here, L and M are the solutions of the nonlinear algebraic
Riccati-type equations as

LAy, + Ay — LA, L — A, L =0,
A M = Ay, LM — MA,, — MLAm + Amz =0, (24)

with initial conditions

Ly =A4;,4

2 Az My = Am:A,;.iz (25)
Therefore

Ay = As)) "Am:l‘o’ By = Bn'l ~MBy,. (26)

G

Lemma 1. Assume that A22 is nonsingular and use L0 and
Ao. If

1

450 < , . (27)
' 3 Aso 1T A5, 1 ITL D
then the sequences Lk and Mk are defined by
L, = A4;;l(A(ill + LAy, — Li4,.L),
M = (A + Ay~ A LM~ MU LAY A0, (28)

and L0 as in (25) converges to a real bounded root of (24.a).
Moreover

Loy = LI < ML =LJl, k=0, 1,2, 3 - (29)

It offers a simple tool for approximating L if || 4;1, ] is small
From (25), (26) and (29) with k = 0, we obtain
L —L,=4;,,L,4, and, therefore,

L =Lyl < gl = LIl if 4l < pll 4, I (30)

when (30) is satisfied with a small p, we can use L0 as an
order of p approximation of L, that is,

L= L, +0(u)= Asyy Aysy + O(p2). (31

Proof: See [4].
Remark 2. Note that 4}, 4,,, needs not be O(p) because we
may allow A, to be of order 1/p. It is now easy to interpret
(20) as a property of (18).

Lemma 2: The system (18) will have the two-time-scale
property (20) if Lemma I holds and if (30) is satisfied with p
<< 1, that is,

Il << 140l 32)
Of course, Remark 2 is valid here. From Lemma 1 and Lemma

2, we conclude that a sufficient condition for a system to pos-
sess the two-time-scale property is

A 1 << Al Ao i+ 1 Az 11 L 1137 (33)
Now we can produce the approximated expressions for x and z

Proof: See [3].
Lemma 3: When Lemma 2 holds, then



Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 4, December, 2001 245

x(7) =x,(7) + A(»‘le{;‘izzn(T) +O(u),
2(7) = Ay Ay X, (T) + 2,(7) + O( ), (34)

92247

w and x,

)2’() = A,»'() 0 X() + Bo’() u (35)
L:[) 0 AA‘ZZ Z(l de o

1.2 Quasi-Steady-State approximation [2]-[4]
To give a simple interpretation of (34), we compare (18)
with the system

px(1) _ Ao A || X(2) + B u(r) (36)
0 Asy A ] Z(7) B, 1

where a bar denotes quasi-steady-state. The system (38) is

where x are obtained from the simplified subsys-

tems as

reduced to
PY(7) = AsoX (1), E(7) = A0, (As X (7) + B,u (7)) (37)

Thus x,, A;),A4s,x, can be interpreted as a quasi-steady-
state of x after z has decayed. This state is varying slowly
compared with the variations of z. Hence, to get an O(u) ap-
proximation of the slow parts of x(t) and z(t), we simply let
pz=01in (18).

Remark 3: If the original system possesses a two-time-
scale property, but the matrix A is not in the form satisfying
(33), this property can be exhibited by transformations, such
as re-indexing and re-scaling the state variables [3]. Substitut-
ing (37) into (36) yields

px, = A;x () + By (1), x(0)=x,, (38)

307

where A0 and B0 are defined in (26). Thus, X =x, u =u,
v are the slow parts of the corresponding variables in (23).
To derive the fast subsystem, we assume that the slow vari-
ables are constant during fast modes, that is, pz=0and X

is constant. From (36) and (37), we have

pz(T)— pz(7)

=4, {2(0) - Z(D)) + By fu(n) —u (0)}. %)

Letting z, =z-Z, and u,=u-u

(18) is redefined by

; the fast subsystem of

Pz, ()= As2, (r)+ B,,.zu/ (1),
z,(0) =z, ~Z(0). (40)

2. Discrete-Time systems [16]
The general form for a linear, shift-invariant and singularly
perturbed discrete system is given as

x(k+1)= A4, x(k) + &' 4,,z(k) + B, u(k),
X2k + 1) = £ jA,, x(k) + £ Ayppz(k) + €' B, u(k).  (41)

with 0<1 <1 and 0< j <1 where x(k) and z(k) are the slow and
fast state vectors of n and m dimensions, respectively. u(k) is
an r dimensional control vector, £ is the singular perturbation
parameter, and Aij and Bi are matrices of appropriate dimen-
sionality. The subscripts 6 and d denote the 8-operator system

(the continuous-like unified expression) and the discrete sys-
tem, respectively. Here we choose a special model with i = j =
I as,

x(k +1) = A, x(k) + A,,z(k) + B, u(k),
ez(k +1) = A, x(k) + A,,,z(k) + B ,u(k). (42)

Consider the system given as (42) with the initial conditions
x(0) and z(0). It is assumed that the system is asymptotically
stable and that its eigenspectrum consists of a cluster of »
large eigenvalues and a cluster of m small eigenvalues. Then
we can arrange the eigenvalues of the system as

> e

> fpil > [P
> ‘p.\'n‘ > \p/ll > \p/z oz |prm
& =|pallip,l << L

(43)

s

For block diagonalization of (42), we need the two stages of
the linear transformation. First, the A21 block is removed to
make the equation (42) an upper triangular matrix by using the
transformation:

z, (k)= z(k) + Dx(k), (44)

where D(m x n matrix) is a root of the Riccati-type algebraic
equation as

A;nD—=DA, +DA,,D -4, =0. (45)
From (42) and (45), we obtain equation (46) as
x(k+1) Ay Ao || x(k) B
= B + u(k), (46)
[z/ (k+ 1)} { 0 A, ||z, |B, )
Bd/ =DB, +8B,,.

Second, we have the transformation as

x (k)= x(k)+ Ez  (k),
EA, - A,E+A,,=0, (47)
E(4,,, +DA4,,)— (A4, —A;,D)E +4,, =0. (48)

Then, (46) and (48) results in

‘:x\(k +1)} {Ad\. 0 Hx\_(k)} {Bm " 49)
= + u(k),

z(k+1) 0 A, |z, B,

where Bs = (Is + ED)B1 + EB2. In addition, from (44) and

(47), we have

xtky| | 1, -E x (k) 50)
Zk)| =D (I, +DE)| z,(k) (
The iterative solution of (45) is given as

Dy, =(4,.D,+ D,A4,,D - Adzn)Aarllw (51)

with an initial value D, =-4,,4;,,. Similarly, for the equa-
tion (48), we have

EH] = Ar/III(EiAdZZ + EIDAx/IZ + AdIZDEI + Axl]Z)’ (52)
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with an initial value of D,=-A,,A;,. Substituting
D0 and E0 into (49) yields

Ao = A+ 4,54 A3

d127°d21° 411

Adfo =A;- AdzlA;111A41za
B,=8,~ A;lllAdledZZA;lllel + A;lllAdlzde7
Bdfo =B, - AdZIA(;;IBd]’ (53)
X, (k+1)] _ Ay 0] xso(k)|-|+ Bd:ol-]ll(k) (54)
zfo(k+1)J 0 Adf(,J zfo(k)J BdfOJ )

It is shown that a two-time-scale system is de-coupled into
the slow and fast subsystems [15]-[17].

IV. Example
An airplane model is given in the discrete system as

l:x(k + l)l-] - {Au A12—||:X(k)l-| + liBlﬂu(k),
z(k + 1)_] Ay AZZ_I Z(k)_] BZJ

where x1(k) is velocity (ft/sec), x2(k) is pitch angle(deg or
rad), x3(k) is altitude(ft), z1(k) is angle of attack (deg or rad),
and z2(k) is pitch angular velocity(deg/sec).

923701 -308096 0 .053043 —.090367]
039705 995525 0 -.107454 588883
A=| 087127 1.899490 1 -.635270 .394015
—-.035537 .010123 0 .007748  .137407
069562 -.012706 0 -.097108 .287411]|

1. Open-loop system by the 3-opearator approach

1.1 Zero iterations case

Here we directly use the values Lo and Mo in the
continuous-like unified system and have

-.0646 1143 ]
0219 -0076 O]
L= |, Mo=| .1857 -7906
~1006 0189 0]
6815 4215

-8655 —3.0599 0]
As.o=|1.0130 -.1640 0,
1.4067 18.8724 0|

_[-9.9028  1.3096 ]
30T _1.0447 —6.9239“

Eigenvalues of A8 are 0, -0.379*j1.7534, -7.8270 and
-9.2712. Eigenvalues of Asso and Asfo are 0,
-0.5148 £ 1.7253, -7.4912 and -9.3354.

1.2 Three lterations Case

We obtained the values after three iterations to solve the
Riccati-type nonlinear equation (28) as

0292 -.2226]
. M,=]1758 -7330
1341 -1.5078))
-8747 -3.1037 0]
As,=]1.0688 1196 O
14529 19.0660 0)]

0235 -.0069 O]
“1-1008 -0292 o

s

[-9.9027 13123 ]
21 ~.9980 —7.19855'

2. Simulation resuits [15]-[17]

Figures [-5 show the exact and the zeroth approximated re-
sponses of the open-loop system. For Figures 6-10, the op-
timal and the sub-optimal solutions are exactly coincided
when the third order approximation is applied.

VELOCITY (Normalized), Solid:Optimal, Dotted Near Optimal
T

2 4 6 8 10 12 14 16 18 20
Nonreal Time

Fig. 1. Velocity for Open-Loop system with the zeroth

Approximation.

PITCH ANGLE {Normalized), Solid:Cptimal, Dotted:Near Optimal
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Fig. 2. Pitch angle for Open-Loop system with the zeroth
Approximation.

ALTITUDE (Normahzed), Solid: Optimal. Dotted Near Optimal
25 e —

. - -
W ! ! i
I

20

a 2 4 6 8 10 12 14 16 18 20
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Fig. 3. Altitude for Open-Loop system with the zeroth
Approximation.



ANGLE OF ATTACK(Normmalized), Solid:Optimal, Dotted:Near Optimal
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Fig. 4. Angle of Attack for Open-Loop system with the zeroth

Approximation.

PITCH ANGULAR VELOCITY(Normalized), Sohd Optwnal, Dotted Near Optimal
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Fig. 5. Pitch angular velocity for Open-Loop system with the

zeroth approximation.

VELOCITY(Normalized), Sohd:Optimal, Dotted'Near Optimal

F

0 2 4 6 8 10 12 14 16 18 20
Nonreal Time

Fig. 6. Velocity for Open-Loop system with the third

Approximation.
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PITCH ANGLE(Marmalized), Sold:Optimal, Dotted:Near Optimal
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Fig. 7. Pitch angle for Open-Loop system with the third

Approximation.
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Fig. 8. Altitude for Open-Loop system with the third

Approximation.
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Fig. 9. Angle of attack for Open-Loop system with the third
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PITCH ANGULAR VELOCITY(Normalized), Solid:Optimal, Dotted:Near Optimal
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i
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Fig. 10. Pitch Angular Velocity for Open-Loop System with
the third Approximation.

V. Conclusion

For the open-loop response of the system, Naidu er al.
[15}-{17] made the five iterations to obtain the decoupled
solution by solving the nonlinear Riccati-type equations (51
and 52) in the discerete system. But we use the three iterations
to find the same solution by solving the nonlinear Riccati-type
equations (28) in the §-operator system. In this paper, it is
shown that the the §-operator systems have an improved finite
word-length characteristics than the g-operator systems. Also,
note that the decoupled solutions of Naidu er a/. and ours are
robust and almost equal to the exact solution.

References

[1] Bouslimani, M., M’Saad M., and Dugard, L., “Stabilizing
receding horizon control: a unified continuous/discrete
time formulation,” Proceedings of the 32" Conference on
Decision and Control, San Antonio, Texas, pp. 1298-
1303, 1993.

[2] Chang, K. W.,, “Diagonalization method for a vector
boundary problem of singular perturbation type,” Journal
of mathematical analysis and application, vol.48, pp.
652-663, 1974.

[3] Chow, J. and Kokotovic, P. V., “Eigenvalue placement in
two-time-scale systems,” IFAC Symposium on Large
Scale Systems, pp. 321-326, 1976.

[4] Kokotovic, Peter V., “A Riccati equation for Block
diagonalization of ill-conditioned systems,” IEEE Trans.
on Automatic Control, vol. 20, pp. 812-814, 1975.

[5] Kokotovie, P. V., Khalil, H., and O’Reilly, J., “Singular
perturbation methods in control analysis and design.”
Academic Press, Orlando, FL, 1986.

[6] Li, G, and Gevers, M., “Comparative study of finite
wordlength effects in shift and delta operator

parametrizations,” IEEE Trans. on Automatic Control, vol.

38, pp.803-807, 1993.

[7] Li, G, and Gevers, M., “Roundoff noise minimization
using delta-operator realizations,” IEEE Trans. on Signal
Processing, vol. 41, pp.629-637, 1993.

[8] Mahmoud, M. S., “Order reduction and control of
discrete systems,” [EE PROC., vol.129, Pt.D, no4,

pp-129-135, 1982.

[91 Mahmoud, M.S. and ChenY, “Design of feedback
controllers by two-time-stage methods,” Appl. Math.
Modelling, vol. 7, June, pp. 163-168, 1983.

{10] Mahmoud, M. S. and Singh, M. G., “On the use of
reduced-order models in output feedback design of
discrete systems,” Aufomatica, vol. 21, no.4, pp.485-489,

1985.

[11] Mahmoud, M. S., Chen, Y., and Singh, M. G., “Discrete
two-time-scale systems,” [International Journal of
Systems Science, vol. 17, pp. 1187-1207, 1986.

[12] Middleton, R. H. and Goodwin, G. C., “Improved finite
word length characteristics in digital control using delta
operators,” IEEE Trans. on Automatic Control, vol, 31,
no.11, pp. 1015-1021, 1986.

[13] Middleton, R. H. and Goodwin, G. C., “Digital control
and estimation: A unified approach,” Prentice-Hall, 1990.

[14] Naidu,D.S. and Rao, AK. “Singular perturbation
analysis of the closed-loop discrete optimal control
system,” Optimal Control Application & Methods, vol. 5,
pp. 19-37, 1984.

[15] Naidu, D. S. and Price, D. B., “Time-scale synthesis of a
closed-loop discrete optimal control system,” Journal of
Guidance, vol.10, no.5, pp. 417-421, 1987.

[16] Naidu, D. S., “Singular perturbation methodology in
control systems,” Peter Peregrinus, London, United
Kingdom, 1988.

[17] Naidu,D.S. and Price D.B., December, “Singular
perturbations and time scales in the design of digital
flight control systems,” NASA Technical Paper 2844,
1988.

[18] Naidu, D. S., Banda, S. S., and Buffington, I. L.,
“Unified Approach to H-2 and H-inf optimal control of a
hypersonic vehicle,” Proceedings of the American

Control Conference, San Diego, California, June, pp.
2737-2741, 1999.

[19] Shim, K. H. and Sawan, M. E., “Linear quadratic regulator
design for singularly perturbed systems by unified ap-
proach using delta operators,” International Journals of
Systems Science, vol. 32, no. 9, pp. 1119-1125, 2001.



Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 4, December, 2001 249

Kyu-Hong Shim

He was born in Yongin, Kyunggi,
Korea on July 4, 1957. He received the
B.S. degree in aerospace engineering
from Inha University, Korea in 1983,
and the M.S. degree in aerospace
engineering  from  Wichita  State
University, Kansas in 1987, and the

Ph.D. degree in electrical and computer engineering from
Wichita State University in 1999 under the supervision of
Professor M. Edwin Sawan. He worked for the civil engineer-
ing department, KAIST, Korea in 2000. He has been with the
Sejong-Lockheed Martin Aerospace Research Center, Sejong
University, Korea since January 2001. He received the D. W.
Hodgson research award of Wichita State University in 1998.
His research interests are Optimal Control, Robust Control,
Singularly Perturbed Systems, and Delta Operator systems.

M. Edwin Sawan

He was born in Damanhour, Egypt on
July 28, 1950. He received the B.S. and
M.S. degrees, both in electrical
engineering, from the University of
Alexandria, Alexandria, Egypt. In 1976
he moved to the United States of
America where he received the Ph.D.
degree from the University of Illinois at Urbana-Champaign in
1979 under the supervision of Professor Jose B. Cruz, Jr. In
the same year, he joined the faculty of Wichita State Univer-
sity where he has been a professor of electrical engineering

since 1989, graduate coordinator since 1993 and department
interim chairman since June 2001. In 1983, Dr. Sawan re-
ceived the College of Engineering Excellence in Teaching
Award. More than 25 Ph.D. and 60 M.S. students received
their degrees under his supervision. He has served on several
operating committees of regional and national Conferences,
and was the registration chairman of the American Control
Conference in 1994, 1997 and 2000. Dr. Sawan is a licensed
Professional Engineer in Kansas and a senior member of IEEE



