Extraction of Facial Feature Parameters by Pixel Labeling

Seung Up Kim, Woo Beom Lee, Wook Hyun Kim, Byeong Wook Kang

Abstract

The main purpose of this study is to propose the algorithm about the extraction of the facial feature. To achieve the above goal, first of all, this study produces binary image for input color image. It calculates area after pixel labeling by variant block-units. Secondly, by contour following, circumference have been calculated. So the proper degree of resemblance about area, circumference, the proper degree of a circle and shape have been calculated using the value of area and circumference. And Third, the algorithm about the methods of extracting parameters which are about the feature of eyes, nose, and mouse using the proper degree of resemblance, general structures and characteristics(symmetrical distance) in face have been accomplished. And then the feature parameters of the front face have been extracted. In this study, twelve facial feature parameters have been extracted by 297 test images taken from 100 people, and 92.93% of the extracting rate has been shown.

Keywords: Pixel labeling, facial feature parameters

I. 서 론

인간은 살고 있는 주위 환경으로부터 여러 가지의 유용한 정보를 시각 체계로 획득하여 이용한다. 영상처리는 2차원 영상 신호를 처리하여 경계선을 추적하고 다른 원하는 특징들을 강조하며, 영상 획득 과정에서 발생하는 전달 함수의 영향을 최소화하여 집합의 영향을 줄임으로써 영상의 특징 요소 추출을 높이게 하는 것이 중요하다. 이러한 영상처리를 이용하여 얼굴인식에 많이 사용하고 있다.

얼굴 인식은 입력된 얼굴 영상과 이미 알고 있는 영상을 정합하거나 비교하여 사람의 얼굴을 판단하게 된다. 입력된 얼굴 영상에 대한 특정 영역 추출은 영상 배경의 복잡성, 영상의 해상도, 양상 내에서 얼굴의 위치, 크기, 기울기 등의 조건들 때문에 여러 가지 영상 처리 방법으로 특징을 분리하거나 특정 영상을 사용하여 얼굴 영역의 특정 요소들을 추출하게 된다.

얼굴 영상의 특정 추출이나 인식 방법에는 정면 얼굴 영상과 측면 얼굴 영상을 이용하는 방법, 두 가지 방법을 혼합하여 이용하는 방법 등이 있다.

측면 얼굴의 영상을 이용할 경우에는 얼굴과 배경 부분을 정확하게 분리하여야 하는 점이 어려우며, 정면 얼굴의 영상을 이용할 경우에는 측면 얼굴 영상보다 더 많은 정보를 추출할 수 있기 때문에 정면 얼굴을 이용한 시스템의 연구가 많이 진행되고 있다. 정면 얼굴을 이용한 얼굴 영상의 특정 추출이나 인식 방법에는 미리 사람의 얼굴 영상은 기여시키고 주어진 입력 영상과 직접 비교하여 상관 결과 가장 큰 값을 가지는 얼굴을 선택하는 형식 정합(template matching) 방법[1-2]과 전체 얼굴 영상은 얼굴 공간으로 변환시킨을 때 얻어지는 성분값을 이용하여 얼굴의 특정 특성을 이용하는 방법[3-4], 얼굴을 구성하는 성분들의 특정 요소와 위치 관계를 이용하는 방법[5-7], 고의적으로 얼굴에서 원목의 특수 카운팅 방법으로 각 부분의 위치를 찾는 방법[8-9], 세제 분포에 기

형판 정보 방법은 취득된 영상의 크기가 변할 경우 고정된 형판에 의한 인식이 어렵고, 대상과 카메라 각도나 거리 등이 가변일 경우 오인될 수 있다.

영율의 특성 벡터를 이용하는 방법은 여러 가지 변형된 영율에 대하여 일반화된 특정 요소를 정의하기가 곤란하고, 특정 요소 추출 시간이 길어진다.

영율을 구성하는 성분들이 특정 요소와 위치 관계를 이용하는 방법은 특정을 많이 사용하기 때문에 많은 사람을 구분할 수 있으면 영율과 배경을 분리하는 단계에서 영율의 형태를 조명 및 각도에 의한 외부 발생 가능성이 크다.

음직이는 영율에서 음악의 회로 캐ющим 방법으로 각 부분의 위치를 찾는 방법은 영율이 한쪽으로 치우치거나 눈이나 이마 부분이 머리로 감추어져 있으면 특정이 찾기 어렵다.

색제 분포에 기반한 영율 영역 추출 방법은 특정 추출 시 점검에 민감하고 복잡한 배경으로부터 특정 추출이 어려워, 처리해야 할 데이터의 양도 많아지게 된다.

선형회로를 이용하는 방법은 모든 계산이 별로 이루어지지 않아 처리속도가 빠르고, 임의 배경이 시험 배경에 비해 약간 손상된 형태일지라도 인식이 가능하나, 구현이 어렵다.

영율의 특징을 추출하기 위해 사람의 영율 영상은 좌우 대칭이고, 눈썹 아래 눈이 있고, 아랫코, 코 아랫입술이 있다는 기본적인 기하학적 지식을 가지고 있어 소개한 방법들을 이용한다.

본 논문에서는 사람의 영율에 대한 특정 요소를 추출하기 위하여 우선 이전 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 영율 요소 보도 물리 단위로 변환해 구하고, 음악선 추적 방법에 의하여 물리를 구한 다음 번역, 물리, 원형도(circularity) 및 방향비(aspect ratio)의 유사도를 구한다. 그리고 종합 유사도는 영상의 사양화를 위하여 계산된 각각의 물리 유사도에 일정한 상수를 적용하여 구한다. 논, 코, 입의 특정 요소는 물리의 종합 유사도, 대칭적 거리, 물리 위치의 유사도를 활용하여 추출한다. 추출된 각 특정 요소 사이의 거리와 선분의 기울기를 이용하여 12개의 특정 인수율을 추출하는 방법을 제시한다. 제안한 방법의 타당성을 확인하기 위하여 컴퓨터 영상을 대상으로 실험하고 그 결과를 고찰한다.

본 논문의 구성은 다음과 같다. 제1장의 서론에서 이어 제2장에서는 화소 레이블링에 의한 특정 요소 추출 시스템을 제안하고, 제3장에서는 실험결과 및 분석에 대하여 기술하며 마지막으로 제4장에서 결론을 맺는다.

II. 화소 레이블링에 의한 영율의 특정 요소 추출

최종광이나 이후[7]는 입력 영상을 증가하여 레이블을 부여한 후, 레이블된 이전 영상에 체인 코드를 적용하여 영역, 물리, 원형도를 구하여 이들을 특정 요소로 한다. 영율 영상에서 중요한 요소인 두 눈은 특정 요소의 유사도의 거리를 이용하여 검출하고, 기존 영상의 경우에는 추출된 두 눈을 기준으로 보정한다. 다음 단계로, 마스크를 생성한 후에 라인 히스토그램을 사용하여 영율의 특징 요소를 구하고, 각 특정 요소 사이의 거리와 각도를 정했으나 인식하기 위한 요소로 추출한 다음, 역전과 알고리즘을 사용하여 사람의 영율을 인식하는 방법을 제안하였다.

본 논문에서는 컴퓨터 영상을 대상으로 하였으며, 기존보다 간편한 입력영상으로부터 영울 영역을 논, 코, 입의 특성을 구한다. 즉, 사람의 영율에 대한 특정 요소를 추출하기 위하여 우선 이전 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 영율 요소 보도 물리 단위로 변환해 구하고, 음악선 추적 방법에 의하여 물리를 구한 다음 번역, 물리, 원형도(circularity) 및 방향비(aspect ratio)의 유사도를 구한다. 그리고 종합 유사도는 영상의 사양화를 위하여 계산된 각각의 물리 유사도에 일정한 상수를 적용하여 구한다. 논, 코, 입의 특정 요소는 물리의 종합 유사도, 대칭적 거리, 물리 위치의 유사도를 활용하여 추출한다. 추출된 각 특정 요소 사이의 거리와 선분의 기울기를 이용하여 12개의 특정 인수율을 추출한다. 그림 1은 영율 구성 요소 특정 추출 시스템의 구성도를 나타낸다.
다. 즉, 모든 화소값의 평균을 초기의 임계값으로 정하고 그 값을 각 이미지의 각 화소값을 비교하여 임계값과 면적의 각각의 평균의 차 값을 구하여 그 값을 새로운 임계값으로 정한다. 그리고, 초기 임계값과 새로운 임계값을 비교하여 임계값이 서로 같으면 그 값이 최종적인 임계값임을 알 수 있고, 그 값보다 작으면 1로, 크면 0으로 할당하여 이런 영상을 생성한다.

2. 임공 요소 두 번 두께 생성
이런 영상에서 연관된 블록을 구분하여 그 블록에 서로 다른 번호를 붙여 연관된 블록의 갯수를 구하고, 구분된 임공 요소 두 번 두께의 면적을 구한다.

임공 요소 두 번 두께 생성 단계에서는 생성된 이미지 영상을 입력하여 영상 내 화소들 사이의 연관 관계에 의해 영상의 임공 요소 두 번 두께 영역을 찾을 수 있는 임공 요소 두 번 두께 블록을 생성한다. 이 영상에서 연관된 각각의 영역에 고유 레이블을 부여하고, 동일 레이블 영역은 하나의 임공 요소 두 번 두께 블록으로 할당하여 각 블록 단위의 다양한 특성 요소에 의한 블록간의 유사성 측정을 목적으로 한다.

3. 임공 요소 두 번 두께 블록 두 번 특성 요소의 인자 측정
영상 구성 요소의 두 번 두께를 읽을 수 있는 영상 요소 두 번 두께 블록이 생성되면 각 블록의 면적, 블록을 이용하여 원형도와 종합특이의 특성을 계산하여 블록간의 유사성을 측정한다. 블록 단위의 면적은 각 블록 영역의 화소의 수를 정합하여 구하고, 풀레는 유사한 추적 방법에 의하여 구한다. 식(1)에서 면적과 블록을 이용하여 원형도를 구하고, 식(2)에서 블록의 직경과 클로스의 비율에서 종합특이에 관한 정보를 구한다.

\[
\text{원형도} = \frac{4\pi \times S_b}{O_b} \quad (1)
\]

\[
S_b: \text{임공 요소 두 번 두께 블록의 면적} \quad O_b: \text{임공 요소 두 번 두께 블록의 블록 면적}
\]

\[
\text{종합특이} = \max_{S_b} + \max_{O_b} \quad (2)
\]

4. 임공 특정 요소의 추출
본 절에서는 임공 요소 두 번 두께 블록 단위의 영역에 관한 각 영역의 면적, 블록, 원형도, 종합특이의 유사도를 구한 후 이 값을 등의 종합 유사도가 가장 크고, 일정 범위의 거리에서 가장 가까운 것의 2개의 블록을 둘 특성 영역으로 추출한다. 두 블록 사이의 중심로부터 수정 아래에 블록을 탐색하면서, 두 블록 중 하나의 특성과 블록 위치의 유사도를 구한 후 이 값들이 종합 유사도가 가장 큰 블록을 곧 임공 특성 영역으로 추출한다. 임공 영상에 대한 특정 요소를 추출하는 알고리즘을 다음과 같이 제안한다.

\[
\text{제안 알고리즘}
\]

단계 1. 블록 단위의 영역에 관한 각 고립 영역의 화소의 수와 픽셀 수와 최소의 \(x, y\) 좌표를 이용하여 블록의 면적 \(S_b\)을 구하고, 블록 \(O_b\)는 유사한 추적 방법에 이용하여 구하며, 원형도 \(C_b\)와 종합특이 \(A_b\)는 식(1)과 식(2)을 이용하여 구한다.

단계 2. 아래의 식(3)의 후보 블록 계체 조건에 해당하는 블록을 제외한 나머지 클러스터를 임력 영상에 따라 여러 차례 반복 실행을 통하여 얻어진 경계값의 상한과 하한치를 의미하며, 단위는 화소의 수를 나타낸다.

\[
\text{후보 블록 계체 조건:} \quad M \times N \text{의 임력 영상에 따라 여러 차례 반복 실험을 통하여 얻어진 경계값의 상한과 하한치를 의미하며, 단위는 화소의 수를 나타낸다.}
\]

\[
\text{MIN}(S_b, O_b, C_b, A_b) < MAX \quad (3)
\]

단계 3. 각 블록 요소 두 번 두께에 대한 \(i\) 번째와 \(j\) 번째 블록에 대한 특성 요소의 유사도를 구한다. 식(4)의 \(S_{ij}\)는 면적의 유사도, 식(5)의 \(O_{ij}\)는 블록의 유사도, 식(6)의 \(C_{ij}\)는 원형도의 유사도, 식(7)의 \(A_{ij}\)는 종합특이의 유사도를 나타낸다. 그리고 이들 식에서 \(S_i\)는 블록 면적, \(O_i\)는 블록 블록, \(C_i\)는 블록 원형도, \(A_i\)는 블록 종합특이를 나타낸다.

\[
S_{ij} = \frac{S_i(j) + S_j(i) - S_i(j) - S_i(j)}{S_i(j) + S_i(j)} \quad (4)
\]

\[
O_{ij} = \frac{O_i(j) + O_j(i) - O_i(j) - O_i(j)}{O_i(j) + O_i(j)} \quad (5)
\]

\[
C_{ij} = \frac{C_i(j) + C_j(i) - C_i(j) - C_i(j)}{C_i(j) + C_i(j)} \quad (6)
\]

\[
A_{ij} = \frac{A_i(j) + A_j(i) - A_i(j) - A_i(j)}{A_i(j) + A_i(j)} \quad (7)
\]

단계 4. 각 임공 요소 두 번 두께 블록의 중심점과 중심 사이의 거리를 구한다.

\[
\text{단계 5. 영상의 정규화를 위하여 계산된 각각 블록의 값 들에 대한 종합 유사도} \ T_b\text{을 구한다. 식(8)에서 상수값들은 특성을 찾을 때 면적, 블록, 원형도, 종합특이의 유사도가 어느 정도 중요함을 나타내는 가중치 계수로 설정한 것으로서 얻어진 2이하의 값으로써 면적은 0.5, 블록은 0.7, 원형도는 0.9, 모양의 유사도는 200일 때 눈의 모습과 가깝게 되는 값 을 나타낸다.}

\[
T_b = \frac{0.5 \times S_b + 0.7 \times O_b + 0.9 \times C_b + 2 \times A_b}{4.1} = \left(\begin{array}{c}
0.5 \times S_b + 0.7 \times O_b + 0.9 \times C_b + 2 \times A_b \\
4.1
\end{array} \right) \quad (8)
\]

단계 6. 후보 블록, \(B_{ev}(\cdot)\)을 찾기 위하여 식(9)을 이용하여 임공 요소 두 번 두께 블록 영역에 대한 종합 유사도가 가장 크고, 블록이 일정 거리 내에 존재하는 두 개의 블록, \(i, j\)를 찾아서 둘 영역을 관리한다.
단계 7. \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \)을 찾을 때까지 단계 2를 반복한다. 여기서 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \)는 원쪽 눈과 오른쪽 눈을 나타낸다.

단계 8. 코 후보를 둡록 탐색은 \(B_{ov}(i, j) \) 중점과 \(B_{ov}(j, i) \) 중점 범위내(축)에 있어서 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 높이의 평균값을 둡록에서 시작하여 \(B_{ov}(i, j) \) \(B_{ov}(j, i) \) 사이의 거리를 합한 값(축)의 범위로 정의한다. \(B_{ov}(i, j) \) \(B_{ov}(j, i) \) 사이 선분의 중심에서 수직으로 둡록을 탐색하면서 코 둥록 중 둥록의 좌측, 평균의 유사도를 구한 후 코 중심 유사도가 가장 큰 둥록을 고로 정하고, 그 중심점을 구한다. 식(10)의 \(P_m \)은 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이 중심으로부터 수직 아래로 코 후보 위치에 있는 둥록 유사도(길이 1에 가까운수록 코 후보 둥록이라고, 식(11)의 \(S_m \)은 \(B_{ov}(i, j) \)의 \(B_{ov}(j, i) \) 사이 중심에서 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 평균 면적의 0.5배 되는 둥록 면적 유사도, 식(12)의 \(T_m \)은 코 중심 유사도를 나타낸다. \(P_m \)는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 중점에서부터 수직 아래로 코 후보 둥록의 거리, \(C_{ov} \)는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이의 거리, \(S_m \)는 코 후보 둥록 면적, \(S_{ov} \)는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \)의 평균 면적을 나타낸다. 식(11)의 성수값 0.5는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 평균 면적의 0.5배 되는 둥록을 코로 찾기 위한 경계값을 나타낸다.

\[
P_m = \frac{P_{ov}(j) + C_{ov} - |P_{ov}(j) - C_{ov}|}{P_{ov}(j) + C_{ov}}
\]
\[
S_m = \frac{S[j] + S[i] \times 0.5 - |S[j] - S[i] \times 0.5|}{S[j] + S[i] \times 0.5}
\]
\[
T_m = \frac{(P_m + S_m / 2.0)}{1.5}
\]

단계 9. 코 후보 둡록 탐색은 \(B_{ov}(i, j) \) 중점과 \(B_{ov}(j, i) \) 중점 범위내(축)에 있어서 단계 8에서 찾은 코의 중심에서 시작하여 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 높이의 평균값과 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이의 거리를 합한 값(축)의 범위로 정의한다. 코의 중심에서 수직 아래로 둡록을 탐색하면서 합한 둥록 중 코 중심 유사도가 가장 큰 둥록으로 정하고, 그 중심점을 구한다. 식(13)의 \(P_m \)은 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이 중심으로부터 수직 아래로 코 후보 위치에 있는 둥록 유사도(길이 1에 가까운수록 코 후보 둥록이라고, 식(14)의 \(S_m \)은 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이 중심에서 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 평균 면적의 1.5배 되는 둥록 면적 유사도, 식(15)의 \(T_m \)은 코 중심 유사도를 나타낸다. \(P_m \)의 코 영역 중심에서 수직 아래로 코 후보 둥록의 거리, \(C_{ov} \)는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 사이의 거리, \(S_m \)는 코 후보 둥록 면적, \(S_{ov} \)는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \)의 평균 면적을 나타낸다. 식(14)의 상수값 1.5는 \(B_{ov}(i, j) \)와 \(B_{ov}(j, i) \) 평균 면적의 1.5배 되는 둥록을 코로 찾기 위한 경계값을 나타낸다.

\[
P_m = \frac{P_{ov}(j) + C_{ov} - |P_{ov}(j) - C_{ov}|}{P_{ov}(j) + C_{ov}}
\]
\[
S_m = \frac{S[j] + S[i] \times 0.5 - |S[j] - S[i] \times 0.5|}{S[j] + S[i] \times 0.5}
\]
\[
T_m = \frac{(P_m + S_m / 2.0)}{1.5}
\]

(13) (14) (15)

그림 2 입력 영상과 특정 요소 추출 영상

Fig.2 Input image and extraction image of feature component

5. 얼굴 특징 인수의 추출

그림 2(b)에서 눈, 코, 입 특정 요소의 중심이 구해지면 표1의 특정 인수를 추출한다.

<table>
<thead>
<tr>
<th>표 1 얼굴 영상의 특정 인수</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
특정 인수는 원쪽 눈(N1)과 오른쪽 눈(N2) 사이의 거리, 원쪽 눈(N1)과 크(N3)와의 거리, 오른쪽 눈(N2)과 크(N3)와의 거리, 원쪽 눈(N1)과 입(N4)과의 거리, 오른쪽 눈(N2)과 입(N4)과의 거리 및 크(N3)와 입(N4)과의 거리를 구합니다. 그리고 각 거리간의 기울기를 이용하여 코탄 선탄의 값을 구하여 얼굴 영상 분류에 적용한 특정 인수를 추출합니다.

특정 요소 사이의 거리는 얼굴 영상의 크기에 불변하므로 좌우 눈 사이의 거리로 나누어 정규화시켜, 각도는 얼굴의 형태가 좌우 대칭을 이루기 때문에 수직 중심을 기준으로 같은 거리에 있는 좌우 대칭인 점들로 인식되지 않도록 한다.

특정 인수들은 두 특정 요소 사이의 거리와 두 특정 요소 사이 선분에 대한 각도를 조사한다. 그림 3에서 세 특정 요소들의 좌표를 각각 \(P_1(x_1, y_1)\), \(P_2(x_2, y_2)\), \(P_3(x_3, y_3)\)라 할 때 \(P_1, P_2\) 두 점 사이의 거리는 식 (16)을 이용하여 구하고, 각도 \(\theta\)는 식 (17), 식 (18), 식 (19)을 이용하여 구한다.

\[
\ell = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
\]
\[
\tan \alpha = \frac{y_2-y_1}{x_2-x_1}, \quad \tan \beta = \frac{y_3-y_1}{x_3-x_1}
\]
\[
\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}
\]
\[
\cot \theta = \frac{1}{\tan(\alpha - \beta)}
\]

그림 3 두 특정 요소 사이의 거리와 각도

Fig. 3 Distance and angle of feature component

그림 2를 이용하여 얼굴 영상 분류에 필요한 특정 인수들을 추출한다. 100명으로부터 한 사람 당 두 개 또는 3개의 영상을 획득하여 총 217개의 영상을 실험 대상으로 하며, 추출된 영상의 크기는 200×280, 색상은 256 컬러를 사용한다.

본 연구는 정지된 캐릭터 영상과 디지털 캐릭터의 움직임 영상의 특정 요소를 획득하여 데이터베이스를 구축한다.

2. 실험 결과

사람의 얼굴에 대한 특정 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 최소 라벨링을 한 후 만들어진 얼굴 요소 후보를 단일 영역으로 분석하고, 유효한 추적 방법에 의하여 뒷게를 위한 다양한 방향, 물리, 전형적 및 중첩의 유사도를 구한다.

얼굴과 배경을 분리하기 위하여 물체 영역은 화소의 수가 3보다 작거나 500보다 큰 물체, 물체는 화소의 수가 5보다 작거나 400보다 큰 물체, 형형보는 0.2보다 작거나 0.9보다 큰 물체, 중첩되는 0.5보다 작거나 1.8보다 큰 물체를 제외한다.

중첩 유무도는 영상의 정규화를 위하여 제한된 각 물체의 변동, 물리, 전형적, 중첩의 유사도에 가중치 계수를 적용하여 구한다. 그러한 중첩 유사도가 가장 크고, 대칭적인 위치에 있는 두 개의 물체를 높은 특정 요소로 판정한다.

코는 두 눈 사이 선분의 중점에서 수직 아래로 블록을 탐색하면서 블록의 거리, 면적을 이용하여 종합 유사도가 가장 큰 블록을 코의 특정 요소로 판정한다.

입은 코의 중점에서 수직 아래로 블록을 탐색하면서 블록의 거리, 면적을 이용하여 종합 유사도가 가장 큰 블록을 입의 특정 요소로 판정한다.

추출된 각 특정 요소 사이의 거리와 선분의 기울기를 이용하여 12개의 특정 인수를 구하는 채널 알고리즘을 수행하여 얼굴의 특정 인수들을 추출한다.

그림 4는 같은 사람의 3가지 영상을 가지고 눈, 코, 입의 특정 요소를 추출한 영상을 나타낸다. 그림 4(a-1), (a-3), (a-5), (b-1), (b-3), (b-5), (c-1), (c-3), (c-5)는 입의 영상, 그림 4(a-2), (a-4), (a-6), (b-2), (b-4), (b-6), (c-2), (c-4), (c-6)는 눈, 코, 입의 추출된 영상을 나타낸다.

![Image](a1.png) (a 1) ![Image](a2.png) (a 2) ![Image](a3.png) (a 3)
한 경우였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>성공 실패 계 총 추출</th>
</tr>
</thead>
<tbody>
<tr>
<td>스케일 메커니즘</td>
<td>188 88 13 8 201 96 297</td>
</tr>
<tr>
<td>성공률 (%)</td>
<td>93.53 91.67 6.47 8.33 100 100 92.93</td>
</tr>
</tbody>
</table>

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 성과의 결과에 다양하게 나타나지 않았다.

<table>
<thead>
<tr>
<th>추출 수</th>
<th>N1-N2 N1-N3 N2-N3 N2-N4 N3-N4 레코드 번호</th>
<th>특징 인수</th>
</tr>
</thead>
<tbody>
<tr>
<td>성공 실패 계 총 추출</td>
<td>1.000000 0.871094 0.872084 0.869565 0.871961 0.870321 0.870321 0.870321</td>
<td>0.871094 0.871961 0.870321 0.870321 0.870321 0.870321 0.870321 0.870321</td>
</tr>
<tr>
<td>성공 실패 계 총 추출</td>
<td>1.000000 0.871094 0.872084 0.869565 0.871961 0.870321 0.870321 0.870321</td>
<td>0.871094 0.871961 0.870321 0.870321 0.870321 0.870321 0.870321 0.870321</td>
</tr>
<tr>
<td>성공 실패 계 총 추출</td>
<td>1.000000 0.871094 0.872084 0.869565 0.871961 0.870321 0.870321 0.870321</td>
<td>0.871094 0.871961 0.870321 0.870321 0.870321 0.870321 0.870321 0.870321</td>
</tr>
</tbody>
</table>

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.

그림 5는 그림 4에 의하여 추출된 특정 인수를 나타내고 있다. 33도 미만 기울어진 영상에서는 얼굴 특정 요소의 추출이 가능하였으나, 35도 이상 기울어진 영상에서는 특정 요소의 추출이 불가능하였고, 100명의 환경적 인원으로 데이터베이스를 구축하여 실험을 실시함으로써 특정 요소 추출 실험의 결과에 다양하게 나타나지 않았다.
Ⅳ. 결론

사람의 얼굴에 대한 특정 인상을 추출하기 위하여 우선 하나의 고립된 영역으로 분리하기 위한 최소공약수를 한 후 만들어진 기반 특징을 이용하여 올바른 추출 방법에 의하여 높은 구간 수준과 다음 변형, 드레, 원형도, 모양의 유사도를 구한다. 전체 유사도의 일반적인 구조 및 특성을 추출하여 높은, 고, 높은 추출하는 제한 알고리즘을 수행하여 얼굴의 특정 인수를 추출하였다.

제안된 방법의 타당성을 확인하기 위하여 100명의 대상으로 스케일에 의해 획득한 영상과 비교된 카메라에 의해 획득한 총 297개의 영상을 실험하고 그 결과를 고찰하였다.

입력 영상에 대해 특정 추출을 위하여 제안된 알고리즘으로 수행한 결과 다음과 같은 결과를 얻었다.

첫째, 플록분할의 각 영역에 관한 정보를 추출하여 얼굴의 일반적인 구조 및 특성에 관한 특성을 추출하여 높은, 고, 높은 12개의 특징 인수를 추출한 결과 92.93%의 추출 성공률의 결과가 나타났다.

둘째, 특정 인수간의 정의와 관련성을 사용함으로서 영상의 크기 변화에 무관하게 특정 인수를 추출할 수 있었다.

셋째, 얼굴의 특정 중 일부 환경의 영향을 덜 받는 특징 요소들 사이의 거리, 변형, 돌래, 원형도, 자극보, 플록 위치의 정보를 반영함으로써 얼굴 요소 후 보 플록의 기하학적 특성을 기반으로 특정 인수를 추출할 수 있었다.

넷째, 추출된 특정 과리미 표시 정회화에서 데이터 레이어를 구현하기에 떨긴 파란한 기역 장소를 낭비하지 않고도 얼굴에 관한 자료를 얻어낼 수 있어 여러 분야에 도움이 될 수 있다.

본 논문에서 제안한 최소공약수 루블영림에 의한 얼굴 특징 인수 추출 시스템은 정적 영상을 기반으로 하는 모든 영상 처리에서 활동 가능성이 크다. 그 활용 분야로는 사용자 사전 선별, 주변인들중의 사진 선별, 범죄자 찾기, 빌고 카드 인출 시스템에서도의 사용을 목표로 한다.

향후 과제로는 얼굴의 기술적 흐름을 정리한 얼굴 운동을 구별하기 위하여 얼굴의 전체적인 운동의 크기와 모양 그리고 구조에 따른 특정 요소를 추출할 수 있는 알고리즘을 개발하여 부분적인 보완을 특정 인수의 추출 성공률을 더욱 높이할 수 있다고 본다.

참고 문헌
김승엽 (Seung Up Kim)
정회원
1993년 한국방송통신대학교
전자계산학과 학사
1996년 영남대학교 교육대학원
정보처리 석사
1999년 ~ 현재 제주도교육과학연구원
교육연구사
관심분야 : 패턴인식, 신경망, 영상처리

이우범 (Woo Beom Lee)
정회원
1995년 영남대학교 컴퓨터공학과
공학사
1997년 영남대학교 컴퓨터공학과
공학석사
2000년 영남대학교 컴퓨터공학과
공학박사
2000년 ~ 현재 대구과학대학교 컴퓨터공학과 전임강사
관심분야 : 패턴인식, 신경망, 영상처리, 컴퓨터 비전

김욱현 (Wook Hyun Kim)
정회원
1981년 경북대학교 전자공학과 졸업
공학사
1983년 경북대학교 컴퓨터공학과
공학석사
1993년 일본 쓰쿠바 대학 공학연구과
공학박사
1983년 ~ 1993년 한국전자통신 연구원 선임연구원
1994년 ~ 현재 영남대학교 전자정보공학부 부교수
관심분야 : 시각정보처리, 패턴인식, 화상처리

강병욱 (Byeong Wook Kang)
정회원
1970년 영남대학교 전기공학과 공학사
1977년 영남대학교 전자공학과
공학석사
1994년 경북대학교 전자공학과
공학박사
1979년 ~ 현재 영남대학교 전자정보공학부 교수
관심분야 : 소프트웨어 공학, 프로그래밍 언어, 데이터 압축