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Abstract

A stress jump, defined as the instantaneous gain or loss of stress on startup or cessation of a deformation,
has been predicted by various models and has relatively recently been experimentally observed. In 1993,
Liang and Mackay measured shear stress jump data of xanthan gum solutions, and in 1996, Orr and Sridhar
reported extensional stress jump data of Boger fluids. Shear stress jumps of suspensions and liquid crystal
polymers have also been observed. In this contribution, experimental work as well as a variety of theoretical
models, which are able to predict a stress jump, are reviewed.

1. Introduction

The last decade has seen a renewed and increasing inter-
est in the stress jump phenomenon. It is defined as the
instantaneous finite change in stress due to an instanta-
neous change in deformation rate. Such discontinuities
were predicted by De Kee and Carreau (1979) and mea-
sured by Liang and Mackay (1993).

We identify three types of stress: a purely elastic stress as
described by Hooke's law; a purely viscous stress as observed
with Newtonian fluids and a viscoelastic stress associated
with a relaxation time or spectrum. The stress jump is asso-
ciated with the purely viscous contribution of the stress. As
observed with Newtonian fluids, the stress is immediately
established or dissipated upon startup or cessation of flow
respectively. To characterize a viscoelastic stress, one can for
example consider the mechanical analog of the Maxwell
model. Even though the force associated with the dashpot is
purely viscous in nature, it is coupled with an elastic spring
force and thus the Maxwell model does not predict a stress
Jump, nor does any other similar viscoelastic model. How-
ever, the Voigt-Kelvin model, with a dashpot and a sprng
connected in parallel and assuming the elastic and viscous
stresses to be independent, does predict a stress jump.

There are two possible mechanisms to account for a
stress jump; a viscous intermolecular force and a viscous
intramolecular force. The former force arises from the
interaction between solvent molecules and polymer mol-
ecules and was used in the rigid dumbbell model (Bird
et al., 1987) and in the De Kee - Carrean model (De Kee
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and Carreau, 1979), to name just two. The latter force
relies on the idea of an internal viscosity (Manke and Wil-
liams, 1987; 1992). The internal viscosity was first sug-
gested by Kuhn and Kuhn (1945), and in the 1980s, the
Internal viscosity idea began to be associated with stress
jump in the bead-rod-spring molecular model.

The stress jump has long been predicted by various mod-
els as scientists realize the coexistence of the purely vis-
cous stress and viscoelastic stress in polymer solutions/
melts and suspensions. Simulation work (Foss and Brady,
2000) has also been performed to identify the behaviors of
different stress contributions, as shown in Fig. 1. In the
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Fig. 1. Peclet number dependence of the different contributions
to the relative viscosity of hard-sphere suspensions deter-
mined by Stokesian Dynamics. (From Foss and Brady,
2000, reprinted with permission from Brady), —@—; 7,
(Total), —a—; 15 (Hydrodynamic/viscous contribution),
-l — 7, (Brownian/elastic contribution).
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context of fluids, the purely elastic stress does not exist
(except for visco-plastic materials) and the viscoelastic
stress is sometimes referred to as the elastic-like stress or
even elastic stress. We use elastic or elastic-like stress to
indicate viscoelastic stress. Generally, the extra stress ten-
sor is expressed as the sum of the elastic-like component ¢*
and the viscous component ¢”: -

g=g'+g 0

Note that, ¢”in Equation (1) may include the contribution
from the viscous solvent as well as the contribution from
polymer molecules. However, experimentalists were not
able to distinguish the elastic from the viscous compo-
nents until Mackay and coworkers developed a technique
to measure the shear stress jump in early 1990's. Sub-
sequently, a stress jump in extensional flow has also been
observed (Orr and Sridhar, 1996; Spiegelberg and McK-
inley, 1996).

2. Experimental techniques

2.1. Shear rheometry

Stress jump measurements are difficult to execute, as the
instrumentation is required to be able to capture the instan-
taneous changes of stress and distinguish them from all
kinds of noise. The rheometer must be rate-controlled,
Mackay et al. (1992) investigated instrument effects on stress
Jump measurements at cessation of (low. Two aspects were
addressed in their paper. One dealt with the analog filters
installed in most commercial theometers and the other one
dealt with the torque head inertia. )

Analog filters serve to eliminate high frequency noise in
torque signals. However, they also filter out useful stress
Jjump signals and generate false smooth transient profiles.
Mackay et al. (1992) set up a switch on their rheometer
which enables measurements with or without filter. Basi-
cally, they illustrated the filter effect by comparison exper-
iments and by simulation work. A Newlonian oil was used
for stress relaxation tests. Ideally, the measured stress
should instantaneously jump to zero. However, a smooth
continuous stress relaxation curve in the first 30 ms was
obtained due to the action of the filter. Without filter, sub-
stantial noise was present, and much faster stress decay
was observed. They also considered a digital filter to
mimic the behavior of the analog filter used in the rhe-
ometer. The digital filter was associated with the simulation
work. The digital filter, represented by a set of equations,
was able to generate output information identical to that
measured using an analog filter, based on input data mea-
sured without the analog filter. In the simulation, stress
relaxation results of an Oldroyd-B fluid model were com-
pared with those filtered by the digital filter. Since the dig-
ital filter behaved as the analog filter, the simulation can be
viewed as a substitution of testing the analog filter in the
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absence of noise. It was shown that the stress jump inher-
ent to the Oldroyd-B model was completely removed with
the digital filter.

Mackay et al. (1992) also studied the torsion spring tech-
nique, where the torque was calculated by measuring the
spring angle displacement and the force rebalance tech-
nique, where a DC motor drove the shaft to a null position
on a feed-back principle. In a rate-controlled rheometer,
generally the lower tool rotates and the torque is measured
on the upper tool. For a torsion spring type instrument,
upon cessation of flow, the lower tool is assumed to stop
immediately, while the upper tool tends to return to the
equilibrium position and imposes an additional shear on
the sample. Mackay et al. (1992) showed that such a shear,
although small, causes the spring to return smoothly and
prevents accurate measurements of stress jump. A force
rebalance type instrument is able to measure a stress jump,
as the torque head remains at the equilibrinm position
through constant updating by the feed-back system.

The rheometer used by Mackay and his coworkers was a
modified RFS rheometer (Rheometrics, NJ, USA). The
torque transducer used the force rebalance technique.
When determining a stress jump, the sample was first
sheared sufficiently long to reach steady state. After the
shear was stopped, a high sampling frequency was used for
the first second (512 Hz) and a much lower one was used
for the remainder of the experiment. The short time tran-
sient measurements were taken with the internal analog fil-
ter off and the scatter in the data was smoothed by taking
the measurements four times, two in the clockwise direc-
tion and two in the counter-clockwise direction. The pri-
mary data (the average of the four measured values) was
further processed with a Butterworth digital filter to elim-
inate high-frequency noise. Due to some inevitable instru-
ment effects as revealed by testing Newtonian fluids, the
data collected in the first 15-20 ms were ignored. Sub-
sequent data were extrapolated to the instant of cessation to
obtain the retained elastic-like stress values. Two extrap-
olation procedures were used: the log of stress versus linear
time and a linear stress versus time approach. Essentially
equivalent values were obtained with these two procedures.

2.2. Extensional rheometry

The extensional rheometers used were described in detail
by Tirtaatmadja and Sridhar (1993) and by Orr and Sridhar
(1996). Basically, two platforms were mounted on a shaft.
The platforms can move either independently with a servo
controller connected to each one of them, or simultaneously
with a servo motor connected to the shaft. A force trans-
ducer (Cambridge Technology 400A) was attached to one
of the platforms whilst a fixture was attached to the other.
The diameter of the filament during stretching was mea-
sured by an oplical diameter-measuring device (Zumbach
ODAC). When both platforms were moving, the Zumbach

Korea-Australia Rheology Journal



Stress Jump: Experimental Work and Theoretical Modeling

was placed at the mid-point of the filament. If only one
platform was moving, the Zumbach was offset from the
mid-point of the filament to avoid the effect of the end
plates. The analog force transducer signals were collected
into a computer via an analog-to-digital card (ADC). To
enable the capture of fast transients, the cut-off frequency
of analog filters was increased to 40 Hz because it was
found that this frequency represented a nice compromise
between signal quality and lag due to filtering.

2.3. Experimental results

2.3.1. Shear stress jump

To our knowledge Mackay and coworkers were the only
group performing mechanical measurements of shear stress
jump (Mackay, 1999). They have investigated viscous-like
and elastic-like components of shear stress for several sys-
tems, including suspensions, polymer solutions and rigid
molecule systems such as viruses and liquid crystal poly-
mers (LCP).

A dimensionless stress jump ratio at cessation of flow
was defined as (Liang and Mackay, 1993):

G.qi(t,%a %)_ @)
NGARSIIOYS
where 1), is the measured solvent viscosity, ¢ is the time
after cessation of shear and 7 refers to the strain achieved
during shearing at the rate ¥, prior to cessation of flow.
o(%) represents the steady state shear stress while o, refers
to the transient shear stress after cessation of flow. The
contribution of the Newtonian solvent or the continuous
medium is excluded.

R (%7 =

2.4. Suspensions

In 1995, Mackay and Kaffashi (1995) studied the shear
properties of highly deionized polystyrene spheres in
water. The particle diameter size was 111.6% 2.8 nm, deter-
mined by SEM and dynamic light scattering (DLS). Four
suspensions were produced, with volume fractions of
0.246, 0.256, 0.383 and 0.419 respectively. All suspensions
were iridescent at rest, indicating that they had a crystal-
like mesostructure. A 25-mm diameter cone and plate with
an angle of 0.09974 rad was employed for the rheological
measurements. They determined that the stress jump ratio
at cessation of flow (at 1=0) for the four samples decreased
with increasing shear rate. The R™—y evolution for the
four different volume fraction samples, appeared close to
each other, as shown in Fig. 2. The stress jump ratio at a
shear rate of 0.1 s~ was around 0.95, while at 300 s~ it was
around 0.25. This confirmed that the elastic-like stress was
dominant at low shear rates while viscous stress was dom-
inant at high shear rates. They attributed this change in the
relative contribution of these two stresses to possible shifts
in the microstructure. The magnitudes of the stresses
showed strong concentration dependence. The viscous
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Fig. 2. Shear rate dependence of the stress jump ratio upon ces-
sation of shear flow for four polystyrene sphere suspen-
sions. (Data adapted from Mackay and Kaffashi, 1995), ¥
; 0.246 (volume fraction), @; 0.256, A; 383, H; 0.419.

stress displayed a more severe dependence on volume frac-
tion at high shear rate than at low shear rate. This was also
related to the change in microstructure.

In 1997, Kaffashi er al. (1997) studied the shear prop-
erties of Brownian, rigid sphere suspensions. The poly-
methylmethacrylate (PMMA) spheres were modified
with about 10% styrene, crosslinked with divinyl ben-
zene and stabilized by a chemically grafted solvated
layer of poly (12-hydroxystearic acid). The mean hydro-
dynamic particle diameter was 376 nm, measured via
DLS and the mean dried particle diameter was 316 nm,
measured via electron microscopy. The solvated layer
was taken into account for calculating the effective vol-
ume fraction. Three samples were used, with effective
volume fractions (volume fractions) 0.547 (0.456), 0.586
(0.488) and 0.688 (0.573). The geometry used for the
measurements was a 50 mm diameter cone and plate
with a cone angle of 0.0874 rad. The limited shear rate
range used in this study ( 0.1 s™' to 60 s7') did not reveal
shear thickening. It was found that the viscous viscosity
component remained almost constant with shear rate,
while the elastic-like one was shear-thinning over the
whole shear rate range, with a power law index of
approximately zero. The relative viscosity versus shear
rate for the 0.547 volume fraction is shown in Fig. 3. The
elastic-like stress for the lowest volume fraction showed
a local maximum with shear rate while for the highest
volume fraction it was a monotonically increasing func-
tion of shear rate. The behavior of the intermediate one
was between the other two. Such phenomena were
believed to indicate that the various volume fractions
used in the study had different structural responses to
shear. Furthermore, the relaxation of the elastic-like
stress was found to fit a power law. Analysis of the data
yielded a unique time constant for all volume fractions
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Fig. 3. Shear rate dependence of the different contributions to the
relative viscosity of a polymethylmethacrylate particle
suspension of 0.547 volume fraction. (Data adapted from
Kaffashi et al., 1997), A ; 17, total, @; 7, elastic-like, H
; 1, viscous.

studied. There was good agreement between this time
constant and that from diffusion of a single particle. Kaf-
fashi et al. (1997) also pointed out the similarity of the
stress decay and fractal diffusion of particles.

More recently, O'Brien and Mackay (2000) studied the
rheological properties, especially shear thickening, of con-
centrated silica hard sphere suspensions. The charged silica
particles were coated with 3-(trimethoxysilylpropyl) meth-
acrylate (TPM) and dispersed in tetrahydrofurfuryl alcohol
(THFFA) wsing centrifugation. The particles were essen-
tially monodisperse with a diameter of 140 nm, determined
via SEM. Three volume fractions of 0.54, 0.59 and 0.63
were produced. The measurements were performed with a
50 mm diameter cone and plate geometry of a cone angle
of 0.0874 rad. All three volume fractions were believed to
be above the glass transition volume fraction (that is: the
material exhibits solid behavior), based on the observations
that no zero shear rate viscosity existed and stress decay
followed power law dynarmics which suggested a fractal-
like microstructure. The elastic-like viscosity component
decreased with shear rate while the viscous viscosity com-
ponent remained almost constant at low shear rate. The
highest volume fraction, 0.63, was dominated by the elas-
tic-like stress while the lowest one, 0.54, was dominated by
the viscous stress. Different behaviors were observed when
shear thickening was involved. The lowest volume fraction
showed continuous shear thickening, as gradually increas-
ing steady viscosity values were measured. For the samples
with volume fractions 0.59 and 0.63, discontinuous shear
thickening was observed, i.e., at a critical shear rate, the
stress rose rapidly and did not achieve a steady state value.
Relative viscosity versus shear rate for the (.59 volume
fraction is shown in Fig. 4. Moreover, the type of shear
thickening changed as well. For the two lower volume frac-
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Fig. 4. Shear rate dependence of the different contributions to the
relative viscosity of a silica particle suspension of 0.59
volume fraction. (Data adapted from O'Brien and Mackay
2000), A ; 7, total, @; 7, elastic-like, l; 7, viscous.

tions, shear thickening was attributed to the increase in the
viscous component of viscosity. It was consistent with the
simulations (Foss and Brady, 2000) and the optical mea-
surements (Bender and Wagner, 1995) on similar systems,
confirming that shear thickening in such suspensions is
caused by particle clustering. For the highest volume frac-
tion sarnple, shear thickening was associated with an increase
in the elastic component. This can also be interpreted via
the clustering theory (Bender and Wagner, 1995). As clus-
tering caused an increase of the effective volume fraction,
O'Brien and Mackay (2000) argued that the highest volume
fraction, 0.63, caused the effective volume fraction to reach
a maximum packing value and thus the sample became
solid-like in nature.

2.5. Stress-optical measurements

The stress-optical law for polymers was extended by
Bender and Wagner (1995) to colloidal suspensions. As the
birefringence index of polymer solutions provided a direct
measurement of the entropic (elastic-like) force, the authors
established a similar relationship equating measurements of
the complex refractive index tensor to the measurements of
the thermodynamic contribution to the stress tensor. In a
shear flow, the relation is given as:

An"45u — Cojherma (3)

where An" _, is the magnitude of the dichroism measured
at a 45° angle to the flow-direction in the flow-velocity-
gradient plane, 6"“™ is the thermodynamic contribution to
the stress and C is a stress-optical coefficient, depending on
particle size, volume fraction, wavelength of the light, the
refractive index difference between the particles and the
medium, and potentially on the Peclet number. Since the
shear stress consists of the thermodynamic contribution
and the hydrodynamic contribution:
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o= therlrzn+0_{1ydra (4)

the combination of rheological and flow dichroism mea-
surements yields a method to distinguish between the elas-
tic-like stress (thermodynamic) and viscous stress (hydro-
dynamic). Strictly speaking, the stress-optical relationship
for suspensions is valid only in the linear limit, i.¢. for
asymptotically low shear rates. However, for concentrated
suspensions of charged particles, as well as for hard-
spheres and sterically stabilized suspensions, Equation (3)
can be constdered to be approximately correct.

The systems studied by Bender and Wagner (1995) were
hard sphere silica particle suspensions. The monodisperse
particles were produced following the Stober process (Sto-
ber et al., 1968), involving the condensation reaction of tet-
raethylorthosilicate (TEQS) in the presence of a base (NH;)
at room temperature. Particles of three diameters (Jabeled as
HS100, H5200 and HS400) were obtained by varying the
concentration of base and of TEOS. The diameters were 95
nm, 140 nm and 400 nm respectively, determined via TEM,
To provide near hard sphere character, particles were
coated with 3-(trimethoxysilylpropyl) methacrylate (TPM)
to remove surface charges and index-matched in tetrahy-
drofurfural alcohol (THFA) to provide an optically trans-
parent suspension and to remove Van der Waals interaction.
A variety of volume fractions were obtained by diluting a
stock suspension. Viscosities were measured on a Bohlin
C510 controlled-stress rheometer with a 4° cone-and-plate
geometry and the dichroism of the shearing suspensions
was measured with a Rheometrics Rheo-optic Analyzer
(ROA). An example data set, plotted as stress versus shear
rate, for HS200 at a volume fraction of 0.52 is shown in
Fig. 5. The authors found that the viscous viscosity com-
ponent was constant throughout the shear thinning regime.
Bender and Wagner (1996) observed that the hydrody-
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Fig. 5. Total shear stress, dichroism and calculated elastic-like
stress versus shear rate for a gilica particle suspension of
0.52 volume fraction. (From Bender and Wagner, 1995,
reprinted with permission from Wagner), [1; dichroism,
A total shear stress, O; calculated elastic-like stress.
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namic stress dominated the shear thickening region in their
investigation of the shear thickening behavior of the silica
suspensions with the same rheo-optical technique, justi-
fying the clustering theory.

2.6. Rigid molecules

Mackay and Liang (1992) reported stress jump mea-
surements of semidilute solutions of rigid molecules (Tobacco
Mosaic Virus (TMV)) in shear flow. The virus was isolated
from infected plant leaves after sufficient growing time.
The concentration in the buffer solution was determined by
optical density measurements. Further adjustments were
performed to produce a solvent consisting of 75 wt.% fruc-
tose and 25 wt.% buffer solution. The length of the virus
was found to be 690t 469 nm and the diameter was 18+ 4
nm, determined via scanning electron micrographs. The
solvent density was measured to be 1374 kg/m® at 22°C
and the TMV density was assumed to be 1370 kg/m’. A
variety of concentrations were used, from 2.4 mg/ml to
21.6 mg/ml and the experiments were tun on a modified
Rheometrics RFS rheometer at 22°C, Steady shear mea-
surements revealed that, the shear rate range from 0.001 s~
to 200 s was divided into three regions, one Newtonian
and two shear thinning with different power indices. Stress
Jjump measurements showed that the stress decreased to
zero immediately after cessation of flow for all solutions
tested in the shear rate range from 0.5 to 20 s, indicating
that the viscous contribution dominated.

Liquid-crystal polymers (LCPs), exhibiting unique rheo-
logical properties, have been actively studied in the past
five decades. The viscous contribution is frequently ignored
by most theories. To verify the existence of a viscous stress
in LCPs, Smyth and Mackay (1994) performed a series of
theological measurements on lyotropic aqueous hydrox-
ypropylcellulose (HPC) solutions in the biphasic and lig-
uid-crystalline regions. The HPC powder came with nominal
molecular weights of 100,000 Daltons. After carefully
removing excess moisture, the HPC powder was mixed
with distilled water in a tightly sealed and covered jar for
approximately four weeks under slow rotation. Then the
samples were placed in a refrigerator before testing. The
experiments were performed on a Rheometrics RFS-8400
rheometer at room temperature (23+ 2°C) with a cone and
plate geometry of diameter 25 mm and an angle of 0.09985
rad, and on a RDS I rheometer with a cone and plate of
diameter 25 mm and an angle of 0.020 rad. The steady
shear viscosity measurements suggested that solutions of
concentrations above 45% were in a fully liquid-crystalline
mesophase while below this concentration the solution was
biphasic. Due to noise, stress jump data of shear rates
below ~0.03 s~ were not available. The stress jump ratio
versus shear rate for various solutions are shown in Fig. 6.
The general trends of the stress jump ratio showed that the
viscous stress was the major component for low concen-
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Fig. 6. Shear rate dependence of the stress jump ratio upon ces-
sation of shear flow for two lyotropic hydroxypropylcel-
lulose solutions. (Data adapted Smyth and Mackay, 1994),
®: 25 wt.%, A ; 30 wt.%.

trations at all shear rates tested, and it was dominant for all
concentrations at high shear rates. An interesting obser-
vation made by Smyth and Mackay (1994) was that a local
maximum was measured for stress jump ratio, which indi-
cated that the viscous contribution reached a minimum at
a critical shear rate. It is generally observed with other
materials that the viscous contribution increases with shear
rate, as predicted by most theories. The authors proposed
an additional mechanism for viscous stress dissipation to
explain this controversy. They attributed the increase of the
viscous contribution with decreasing shear rate, below the
critical shear rate, to the sliding of domains formed by
defects in the structure, causing the dissipation of hydro-
dynamic energy at the interdomain boundary (the defect
regions).

2.7. Polymer solutions

Liang and Mackay (1993) measured stress jump after
steady shear for semidilute solutions of a semirigid xanthan
gum macromolecule. The xanthan gum sample used is a
polydisperse food grade commercial product manufactured
by jungbunzlauer (Australia) in a solvent of 75 wt.% ftuc-
tose and 25 wt.% water. Xanthan gum was first mixed with
de-ionized water in a sealed bottle under slow rotation for
one day, after which fructose was added and the entire
solution was rotated for three more days. The solution was
then allowed to rest for three days before any measure-
ment. A variety of concentrations were prepared, from
0.005 to 0.050 wt.%. The rheological characterization was
carried out on a modified Rheometrics RES theometer at a
temperature of 22.0% 0.1°C. Two cone-and-plate geome-
tries were used. One was 25 min in diameter with an angle
of 0.09974 rad and the other was 50 mm in diameter with
an angle of 0.0874 rad. Though xanthan gum is capable of
forming a liquid-crystal phase, the solutions tested by
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Fig. 7. Shear rate dependence of the stress jump ratio upon ces-
sation of shear flow for three xanthan gum solutions,
(Data adapted from Liang and Mackay, 1993), O; 0.010
wt%, [1: 0.020 wt%. 2; 0.050 wi%.

Liang and Mackay were in the semidilute region, based on
the intrinsic viscosity measurements. The stress jump ratios
decreased monotonically with shear rate, from around 0.8
at 1 5™ to about 0.45 at 20 s™', showing the increase of the
viscous contribution. The stress jump ratio versus shear
rate for three solutions is shown in Fig. 7. One observed
that the measured jump ratios were essentially independent
of concentration. The authors postulated that there was no
phase change in the samples from the dilute to semidilute
region and thus no significant deviation from dilute solu-
tion behavior should be expected.

The simple linear stress-optical law, has been verified in
various experimental studies on single-phase polymer melts
and entangled solutions. Those studies were performed,
well above the sample glass transition temperatures, under
moderate chain deformation (Larson, 1999). The stress-
optical law is written as:

gp = Cg" (5)

where n” denotes the birefringence tensor; ¢ is the polymer
extra stress tensor and C is the stress-optical coefficient, a
material constant. Some researchers (Amelar et al. 1991;
Fuller 1995) also found the stress-optical law to be valid
for dilute polymer solutions if the solvent contributions were
excluded. This was not the case in the work of Smyth et al.
(1995), who performed rheological and optical measure-
ments on two xanthan gum solutions of 0.025 and 0.050
wt.%. The breakdown of the stress-optical law was also
observed by Mead and Larson (1990) for poly(ybenzyl L-
glutamate) (PBLG) in m-cresol. The samples used by
Smyth et al. were similar to those prepared in Liang and
Mackay (1993) and stress jump measurements were car-
ried out to determine the shear elastic-like and viscous
stresses. It was found that the stress-optical law was valid,
if only the elastic-like stress was used. This is shown in

Korea-Australia Rheology Journal



Stress Jump: Experimental Work and Theoretical Modeling

10 10!
— o 4‘
Lyt I -~
Q an = =
i - A a
A - ot ~

— .J(/ - —

& - - T =
= / - - ™
- - - o < [}
1] - .,/ P
h=) - / 7]
= & @
o 100} / {100 £
2 s c
g 7 3
=4 s 2
= e (72
D
=
m

1 . . 107
1010—‘ i 10! 402

Shearrate ¥ (s7)

Fig. 8. The optical birefringence index versus shear rate compared
with different contributions to the shear stress for a 0.05 wt.%
xanthan gum solufion. (Data adapted from Smyth er al,
1995), A; 1y, @; Gy, ®: o, elastic-like, H; o, viscous.

Fig. 8, and can be interpreted from molecular origin of the
stress-optical law. The viscoelastic stresses are proportional
to the second moment of the configuration distribution
function in the dumbbell model and the network model.
Mechanical viscoelastic stresses can be interpreted in terms
of anisotropy in molecular orientations and thus a pro-
portionality may exist between the polymer viscoelastic
stress and the optical anisotropy or birefringence (Larson,
1999). On the other hand, the viscous stress, originating
from hydrodynamic interactions, has no direct and/or sim-
ple dependence on polymer configuration and may not
conform to the stress-optical relationship,

2.8. Elongational stress jump

While Mackay and coworkers were performing direct
measurements of stress jump in shear flow, others (Orr and
Sridhar, 1996; Spiegelberg and McKinley, 1996) also dis-
covered stress jump in extensional flow.

Orr and Sridhar (1996) investigated the nature of exten-
sional stresses by performing stress relaxation measure-
ments following extensional deformation. In a typical
relaxation experiment, a rapid stress decrease could be
observed followed by a slow stress relaxation. However,
the rapid change of velocity of the platform could cause the
initial stress relaxation to oscillate. The authors used the
sum of two exponentials (see Equation (6)) to fit the resid-
ual stress time curve.

O = Aexp(-t/a)+Bexp(-t/b) (6)

The stress at =0 was then obtained from Equation (6).
This stress was considered to be the elastic stress and the
difference between the stress measured at (total stress) and
the elastic stress was taken to be the viscous stress. The
samples studied were two PIB Boger fluids, labeled as
Fluid A (0.31 wt.% PIB, 94.86 wt.% PB and 4,83 wt.% tet-
radecane) and Fluid B (0.185 wt.% PIB, 92.37 wt.% PB
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Fig. 9. Viscous stress versus extensional rate at three constant val-
ues of elastic stress for a Boger fluid. (From Orr and Sridhar
1996, reprinted with permission from Sridhar), @; Elastic
stress=58000 Pa, M ; Elastic stress=27000 Pa, A ; Elastic
stress=20000 Pa.

and 745 wt% Xkerosene) with molecular weights of
1.2x10° and 2.4x10° and viscosities at 21.5°C of 19 Pa's
and 34.2 Pa-s respectively.

Because a finite time was needed to stop stretching (fre-
quently assumed to happen instantaneously in stress relax-
ation), Orr and Sridhar (1996) studied the effect of the
deceleration rate of the rheometer on stress relaxation.
They found that once the time frame was appropriately off-
set, such that the moments at which the rheometer came to
complete rest coincided for each experiment, the rate of the
initial rapid stress decrease was proportional to the rate at
which the rheometer was decelerated. The residual stresses
then merged and started a slow relaxation. This supported
the hypothesis that the initial stress decrease was due to
viscous dissipation. Stress relaxation measwrements after
steady state showed that, the elastic stress was independent
of elongational rate. The authors stated that this result was
doe to the fact that the contour length of the macromol-
ecule was identical for each elongational rate at steady
state. On the other hand, a linear relation was found
between the viscous stress and the elongational rate at con-
stant elastic stress values, as shown in Fig. 9. That is to say:
the viscous extensional viscosity was constant. The authors
also performed relaxation measurements prior to reaching
steady state, to determine the transient stress. That is: to
determine the viscous stress growth and the elastic stress
growth. It was found that the transient viscous stress
increased faster with time than the elastic one. The tran-
sient viscous stress was observed to be proportional to the
strain rate at any constant value of elastic stress, and hence
chain extension. A log-log plot of the viscous contribution
of the extensional viscosity versus elastic stress displayed
a linear dependence on the elastic component. Based on
these observations, Orr and Sridhar (1996) proposed a

September 2001 Vol. 13, No. 3 115



Ning Sun and Daniel De Kee

mathematical relationship between the viscous and the
elastic stress such that:

o' =ke{o’}" (N

where 0" and ¢* represents the viscous and elastic exten-
sional stress respectively, k and o are constants, ¢ is the
extensional rate.

Spiegelberg and McKinley (1996) studied the extensional
behavior of three polystyrene-based Boger fluids, using a
filament stretching rheometer of a similar design to that by
Tirtaatmadja and Sridhar (1993). The PS with molecular
weight of 2.25x10° was dissolved in oligomeric styrene at
concentrations of 0.05, 0.1 and 0.2 wt.% respectively. They
also observed a rapid initial decrease of the tensile stress
upon flow cessation followed by a slow stress decay. The
magnitude of the decrease increased with extension rate.
One could interpret this as resulting from dissipative
stresses associated with frictional drag. '

2.9. Theoretical modeling

2.9.1. Oldroyd B model

As mentioned earlier, the linear Jeffreys model is able to
predict the stress discontinuity at cessation of flow. Its non-
linear counterpart, the convected Jetfreys model or Oldroyd
B model, contains the same characteristics, and can be
wrilten as (Bird et al., 1987):

14 .Y
O+ =10 1+ o i’] ®
where gand ¥are the extra stress tensor and the strain rate
tensor respectively; V refers to the upper convected detiv-
ative. The three model parameters are: A;, the relaxation
time, 11, the zero shear viscosity and A, the retardation time.
At steady shear flow, the elastic and the viscous compo-
nents of the viscosity are:

e /’L _A‘ v
1 =#m, n =%m (9a, b)

For steady uniaxial extensional flow, these components

are:
3(AL=A) 1N,

A(L+2,8)(1-22,8)
However, as seen in the molecular counterpart of Equation
(8), the elastic Hookean dumbbell model (Bird et al,
1987), the viscous stress is related exclusively to the purely
viscous hypothetical solvent. Note that, this hypothetical
solvent contribution may not be equivalent to the actual
measured viscosity of the solvent in a real system.
Mackay et al. (1989) reported a shear stress jump due to
the solvent for a dilute solution of PIB in a viscous solvent
consisting of kerosene and a low molecular weight poly(1-
butene). This type of discontinuity, as indicated by Liang
and Mackay (1993), tells little of the polymer dynamics.

Np= 3&170 (9c, d)

T,E = A’l

116

2.9.2. Bird-Curtiss model

Curtiss and Bird (1981) presented a kinetic theory for
concentrated polymers based on the phase space formalism
(Bird er al, 1987). The constitutive equation is given as:

o= —NnkT[%:S—j_’m H(t-1)A(z, dr-£J", v(t—1)~B(z, t')dt'}

(10)

In this model, a linear polymeric chain, surrounded by
other polymeric chains with number density #, is idealized
as a Kramers freely jointed bead-rod chain, consisting of N
identical beads joined by N-1 massless rigid rods. & is the
Boltzmann constant, 7 is the absolute temperature, & is the
unit tensor and  is the link tension coefficient. i and v are
given as:

(e, =% S expl-7 o (t—1)/A] (112)
o,0dd
vty =L s otexplerQXi-1)/Al (11b)
o, odd
and the tensors A and B are:
1 widu
4oLy (110)
A= (4T wi)
a1 . uuuudu
= 8l [(]+£ZEE)3/2

where A is a time constant, u is a unit vector describing the
molecular orientation; I is the relative Cauchy-Green ten-
SOT. B

The first integral in Equation (10) is configuration based
and thus refers to the elastic contribution. The second inte-
gral, having a direct dependence on the flow field as seen
in Bquation (11d), refers to the viscous contribution. Thus
the steady shear viscosity can be written as:

T="1,+67y (12)

where 7, and 77; denote the values arising from the inte-
grals containing the tensors A and B respectively. The
expression for the extensional viscosity can be similarly
generated. Note that the link tension coefficient, ¢ is
directly proportional to the viscous stress. This parameter
determines the anisotropy of the friction tensor (Bird et al.
1987). If ¢=1, the friction tensor is isotropic. If ¢=0,
there is no tension in the link. That is to say: there is no dif-
ference between the drag force on two adjacent beads and
thus no stress jump exists.

The model has been successfully fitted with the shear
data of polystyrene melts/solutions, polyvinyl acetate solu-
tions and poly-a-methylstyrene solutions (Saab er al.,
1982), and with the extensional data of HDPE melts and
polystyrene melts (Bird er al., 1982).
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2.9.3. De Kee-Carrean model

De Kee and Carrean (1979) proposed a model derived
from Lodge's network theory. The constitutive equation is
given as:

o=—]  mlt—1,1(1,¢)] Tde (13)
where m is the memory function given by:
WAL {  di
Yy —

PERd w70y

7, and 4, are constants, f, and g, are functions of II, the
second invariant of the deformation rate tensor, given as:

mlt—1,1I(1,£)] = %’7 } (14a)

4 ]

f,= cxp[—(—2c+ 31, J%_n} (14b)
g,= exp[_(c—l)tp J%—n} (14c)

where the ¢, are time constants and ¢ is a dimensionless
parameter.

The relation between A, and 77, given by Rouse is
adopted and is written as:
M

My = Moy z A (14d)

e

It is assumed that the f, and g, can be divided into two
sets. In the first set (p=1 to k<M), t, is non-zero, and in the
second set, which can be considered to consist of only one
element (p=M) with 4,,—0, ¢, is zero. The shear viscosity
is given as:

k

n= 3 17,exp(—t,)+1.

p=1

(15a)

where 7}, arising from the element in the second set as a
purely viscous term, have been interpreted by Chan Man
Fong and De Kee (1999), in terms of the network theory,
to be the viscosity associated with the solvent molecules as
well as with the dangling and stray chains. The summa-
tion term in Equation (15a) represents the elastic contri-
bution.

In the case of steady extensional flow, the extensional
viscosity is:

&
Ng=3N.+3%

p=1
1,6Xp(—/3€1,)
{1-2A&expl—/3é&1,(c-1)]H 1 +A,exp[-./3E2,(c~ 1)1}
(16)

Again the dangling and stray chains can give rise to an
extensional stress jump as the 37. term will dissipate
imroediately upon flow cessation.

This model has been successfully fitted with the shear
flow data of polystyrene solutions, polyacrylamide solu-
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Fig. 10. (2) The polymer viscous contribution to steady-state stress
versus shear rate. (b) The polymer elastic contiibution to
steady-state stress versus shear rate. (From Hua and Schie-
ber, 1993, reprinted with permission from Schieber), 4;
Data from Liang and Mackay, 1993 for 0.01 wt.% xanthan
gum solution, —; Predictions of the FENE dumbbell
model, -——; Predictions for the Hookean dumbbell model.

tions and polyisobutylene solutions (De Kee and Carreau
1979). In addition, it has been successfully compared to
shear stress jump data (Liang and Mackay, 1993) by De
Kee and Chan Man Fong (1999), as shown in Fig. 10.

2.9.4. Dumbbell model

Rigid dumbbell model

In the elastic Hookean dumbbell model, the stress due to
the polymer molecules is viscoelastic while the viscous
stress relates exclusively to the solvent (Bird et al., 1987).
That is to say, the hydrodynamic drag force acting on the
beads is coupled with the elastic spring force to generate a
viscoelastic force. In the rigid dumbbell model, the spring
is replaced by a rigid rod which acts as constraint on the
system and the hydrodynamic drag force translates to a
purely viscous stress.

The Kramers expression of the stress tensor for rigid
dumbbells is written as (Bird et al., 1987):

0=~ y+nkT0~ 3nkT<uu > — OnkATK : <uuuu>  (17)
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where < > stands for the average over the configuration
space, 1,18 the solvent viscosity and x is the transpose of
the velocity gradient tensor. There also exist some other
expressions for rigid dumbbells which can be transformed
to each other (Bird er al., 1987).

The last term in Equation (17) is the viscous contribution
from the polymer, which is directly associated with the
flow. The term involving the second moment of u is the
elastic stress, related to the molecular configuration.

2.9.5. Bead-rod-spring model with internal viscosity

The internal viscosity was first suggested by Kuhn and
Kuhn (1945), and models generated were found to be able
to describe high-frequency dynamic behavior, dielectric
relaxation behavior and non-linear properties (Manke and
Williams, 1985). In the 1980s, the internal viscosity idea
began to be associated with stress jump in the bead-rod-
spring molecular model.

The expression for the connector force between two adja-
cent beads, when an internal viscosity is considered, is
written as (Manke and Williams, 1986):

F =HQ+¢(%§JQ (18)
where H is the Hookean spring constant, ¢ is the internal
viscosity coefficient, Q is the end-to-end vector of a dumb-
bell and O is the time derivative of Q. It is equivalent to
that of a dashpot connected in parallel with a spring. This
dashpot force resists fast change of bead separation and
represents a viscous contribution to the total stress.

When Equation (18) is used, non-linear and higher order
terms of ¢ will appear in the expression for the stress ten-
sor. If the Kramers dumbbell equation is used (Bird et al.
1987), the stress due to the polymers can be written as
(Wedgewood, 1993):

[ =nkT{§—3g(g£‘2'2 }—ﬂH(l—gXQQ)—%g;S(—Q--Q%Q)
) - e (19)

where g is a parameter associated with the internal vis-
cosity coefficient and {'is the Stoke's drag coefficient. Suit-
able approximation methods have to be adopted in order to
achieve closure. A lot of work has been done on modeling
polymer tolecules with internal viscosity (Manke and
Williams, 1992; Schieber, 1993; Wedgewood, 1993; Sure-
shkumar and Beris, 1995, to name a few). Depending on
the simplification method as well as on some other issues
(such as hydrodynamic interaction) used in the theory, one
may reach different results. Once internal viscosity is con-
sidered, the bead-rod-spring model is able to predict stress
jump as revealed by Equation (19). The last term on the
right side is associated with the velocity gradient tensor
and is thus associated with the purely viscous contribution.
The quantity represented by the last term will dissipate
immediately as the velocity field is set to zero, in either
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Fig. 11. (a) Viscosity excluding solvent contribution (1-1,) ver-
sus shear rate from three xanthan gum solutions.
(Reprinted from De Kee and Chan Man Fong, 1999), Data
from Liang and Mackay (1993): A ; 0.050 wt%, I 0.020
wt%, @; 0.010 wt.%, —; Predictions of the De Kee-
Carrean model.

(b) Stress jump ratio upon cessation of flow versus shear
rate for three xanthan gum solutions. Data from Liang
and Mackay (1993): O; 0.010 wt%, [1; 0.020 wt%, A;
0.050 wt%, Predictions of the the De Kee-Carrean
model: —; 0.010 wt%, ----; 0.020 wt.%, ---; 0.050 wt.%.

shear or extensional flow.

Schieber (1993) studied an internal viscosity Hookean
dumbbell model with a Gaussian distribution function
approximation. He successfully compared the model pre-
dictions with the stress jomp data of Liang and Mackay
(1993). Hua and Schieber (1995) used non-equilibrium
Brownian dynamics simulations to investigate the flow
behavior of Hookean and FENE dumbbells with internal
viscosity. Here also, reasonable agreement with the viscous
and elastic stress on a xanthan gum solution (Liang and
Mackay, 1993) was obtained as shown in Fig. 11.

2.9.6. Liquid crystal polymers

In general, polymer molecules that generate liquid-crys-
talline solutions or melts are semirigid or contain rigid
units named mesogens. The isotropic-to-nematic transition
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is accompanied by a viscosity drop, resulting from less
resistance for polymer molecules to slide over each other in
an ordered state than in an isotropic state (Larson, 1999).
The shearing of LCPs is usuvally characterized by three
regions; one shear-thinning at Jow shear rate (Region 1) and
a second shear-thinning at high shear rate (Region III), plus
a Newtonian plateau at intermediate rate (Region II). How-
ever, for some polymers, Region I has not yet been
observed. Another special property of some nematic LCPs
is the observation of a negative primary normal stress coef-
ficient in a certain shear rate range.

For oriented rod-like polymer solutions, the stress tensor
is given by (Doi and Edwards, 1986; Larson, 1999):

g,= 3nkT(uu—= 6)+n(( nem)u)+n§'§ (i) (20)

where U, is the nematic potential. The first term in Equa-
tion (20) is due to Brownian motion and the last term is
due to the viscous drag force on the polymer.

Smyth and Mackay (1994) interpreted current theories
on LCPs and found a discrepancy with their measured
data on aqueous hydroxypropylcellulose solutions in lig-
uid-crystalline mesophase. According to Doi (1981),
Marrucci and Maffettone (1989), Larson (1990) and Mar-
rucei (1991), the elastic stress consists of three compo-
nents: molecular orientation, interaction potential and
director distortion, all of which are specified as functions
of the rod orientation vector u, while the hydrodynamic
stress is expressed in terms of the double dot product of
the deformation rate tensor and the fourth moment of u.
The viscous stress should be insignificant at low shear
rate so that the stress jump ratio tends to one with
decreasing shear rate. However, a local maximum of the
stress jump ratio was obtained in the experiment. In addi-
tion, as calculated by Liang and Mackay (1993) based on
current theories, the stress jump ratio should show a
strong concentration dependence which was not observed
in the experiment. Smyth and Mackay (1994) then pro-
posed a fifth contribution to the stress: the dissipative
domain sliding force, similar to that in superplastic mate-
rials which may be deformed to a remarkable extent at a
low rate due to the sliding of grains. The required grain
size for superplasticity to happen is of the same order as
the domain size of the LCPs. This sliding mechanism
cannot exist at high rates where failure may occur. This
may explain why the viscous contribution increases with
decreasing rate at low shear rate,

2.9.7. Network model with internal viscosity

Sun (2000) and Sun et al. (2000b) introduced the idea of
internal viscosity into a transient non-affine network model.
The expression for the total stress tensor is given by (Bird
et al., 1987):

m=(QF) (21a)
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where the connector force is assumed to be given by Equa-
tion (18) and

(21b)

where p is the static hydrodynamic pressure. The network
segments are assumed to move non-affinely such that:

z=0+pd

0 =[x Q13ély Q)= k-0 22)
where £ is a slip parameter. Combining Equations (21) and
(22) yields:

QQQ.Q_

T=-H(QQ)- (PK* =) (23)

Through suitable approximations, the final constitutive
equation is written as:

’—_f ”“;e = _/’L(? 58 (24a)
e 2_‘"__’2 +1-97y 7
== () (24b)

where £ (: 9), the internal parameter, as well as A and 7,
are functions” of the second invariant of the deformation
rate tensor, () is the trace of the tensor and Er is the Gor-
don-Schowalter derivative of the total stress tensor:

o oF £
= +(v WVyn—i -1 K + [7/ T+ 7T bi (25)

z°, the elastic contribution, will relax gradually upon ces-
sation of flow, conforming to Equation (24a). The second
term on the right side of BEquation (24b), having an explicit
dependence on the flow field, is the viscous contribution
and is proportional to the internal viscosity coefficient. The
exact meaning of internal viscosity is not vet clear. Some
(Schieber, 1993; Wedgewood, 1993) attribute the internal
viscosity to the internal friction of gauche/trans rotations
along the polymer backbone that have energy batriers (de
Gennes, 1979), and friction between two segments of the
polymer chain which are far away along the backbone but
near in space (Fixman, 1988). The latter force may dimin-
ish with shear since polymer chains will stretch along the
flow field. This adds to the complexity in formulating an
internal viscosity model. Equation (18) is not the only
tested formulation for the internal viscosity. Zimmerman
and Williams (1973) summarized four versions of the
internal viscosity models with respect to their ability to fit
experimental data. Those four models evolved mainly from
the formulas of the internal viscosity force proposed by
Cerf (1957; 1958; 1969), which was proportional to the
deformational velocity of the beads. The evaluation of the
deformational velocity depended on an angular rotation
rate and was controversial. It would either lead to an asym-
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Fig. 12. (a) Steady shear viscosity versus shear rate for three xan-
than gum solutions. (Reprinted from Sun ef /., 2000b),
Data from Liang and Mackay (1993): l; 0.050 wt.%, A,
0.020 wt.%, @: 0.010 wt.%, —; Predictions of the nei-
work model with internal viscosity.
(b) Stress jump ratio upon cessation of flow versus shear
rate for three xanthan gum solutions. (Reprinted from
Sun et al., 2000b), Predictions of the network mode] with
internal viscosity, —, 0.010 wt.%, -—-; 0.020 wt.%, —=;
0.050 wt.%.

metric stress tensor, or after imposing a “symmetrized
function”, yield a limited range of viscosity predictions.
These models are no longer used. Schieber (1992) exam-
ined several dumbbell models with an internal viscosity

Table 1, Constitutive equation-mechanism relation

force and proved that the model with the formulation given
by Equation (18) satisfies an explicitly stated interdepen-
dence of the fluctnating and dissipative forces, known as
the fluctuation-dissipation theorem.

Our recent model (Sun et al., 2000b) predicts a stress
jump in both shear flow and extensional flow. Successful
model comparisons with esperimental data on the shear
viscosity and shear stress jump of xanthan gum solutions
(Liang and Mackay, 1993) are shown in Fig. 12. In addi-
tion, our modified transient network model with internal
viscosity was found to adequately describe a variety of
shear material functions, such as non-Newtonian shear vis-
cosity, primary normal stress coefficient, stress growth as
well as the components of the complex viscosity. Model
predictions were compared with data on xanthan gum solu-
tions, a LDPE melt and polyacrylamide solutions.

2.10. Discussion

There have been many constitutive equations developed
for various systems. However, basic criteria by which one
may select the most useful rheological equation are not
available. It is highly desirable that a model can describe as
many material functions as possible. The existence of a
stress jump directly affects the material transient behavior
and thus a successful model should be able to predict such
a discontinuity. A variety of theoretical models are sum-
marized in this contribution, and listed in Table 1. Liang
and Mackay (1993) have also provided a very good review.

A stress jump may originate from a purely viscous sol-
vent contribution such as in the Oldroyd B model or from
the intermolecular interaction (friction between solvent
molecules and macromolecules). Intermolecular interaction
is reflected in the Bird-Curtiss model, the De Kee-Carreau
model and in the rigid dumbbell model. A stress jump may
also originate from the intramolecular interaction (the fric-
tion between different segments of a macromolecular
chain), such as in the dumbbell model and network model
with internal viscosity. The comparison work supports both
of these mechanisms and the measured polymer viscous
stress may be due to either one or both. Because of the lim-
ited experimental data available, it is hard to assert which
model is superior at this time. In addition, more compar-

Model Theoretical Base Characteristic Equations Stress Jump Force
Oldroyd-B Elastic dumbbell Eq.(8) Solvent contribution
Bird-Curtiss Phase space Eq.(10) Intermolecular friction
De Kee-Catreau Network type Eqgs.(13), (14) Intermolecular friction
Rigid dumbbell Dumbbell type Eq. (17) Intermolecular friction
Dumbbell with IV Dumbbell type Eq. (19) Intramolecular friction
LCP Rod-like polymers Eq. (20) Intermolecular friction
Network with IV Network type Eq. (24) Intramolecular friction
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ison work between model predictions and experimental
data (including birefringence measurements) is yet to be
done. When selecting a model, it is important to identify
those models which are based on a sound theoretical foun-
dation. It is also important for a model to be able to predict
several material functions in terms of a small number of
model parameters. In their review of useful rheological
equations, Carreau and De Kee (1979) showed that the
models obtained from molecular network considerations
appear to be the most successful equations. The modified
network model by Sun ef al. (2000b) is able to describe a
variety of material functions, including steady shear func-
tions, linear viscoelasticity, stress growth as well as the
stress jump ratio, with a reasonable nmumnber of model
parameters. An improvement of elongational viscosity pre-
dictions via the network model has also been shown by
Sun et al. (2000a).

2.11. Conclusions

The stress jump measurement provides a direct way to
distinguish between the viscoelastic and purely viscous
stresses. The viscous stress, dissipating instantaneously at
the moment of cessation of flow, can be captured by mod-
ified rheometers. Basically, the analog filter installed in a
theometer for noise filtering is shorted out or modified so
that the high frequency stress jump signal can be recorded.
However, it is impossible to directly measure the dissipated
stress value. Current technology, via extrapolation based on
reliable transient data, provides an indirect evaluation
method. Such extrapolations, in the absence of reliable data
for the short period following the cessation of flow, may be
subject to errors. Remumelgas er al. (1998) compared the
elongational transient data of Orr and Sridhar (1996) to the
prediction of the FENE-CR model. Due to the increasing
stiffness of the nonlinear spring with chain extension, they
found that the purely viscoelastic FENE-CR model pre-
dicted an apparent viscous stress if the extrapolation pro-
cedure was applied. That is to say, the measured rapid
initial stress decrease of the Boger fluids by Omr and
Sridhar (1996) might not be due to viscous dissipation.
Based on the reasonable agreement between the model pre-
dictions and the experimental data, Remmelgas et al.
(1998) concluded that the rapid initial stress decrease was
most likely due primarily to the nonlinear dependence of
the viscoelastic stress. It is recognized that in the shear
flow test, it takes 1-5 ms for the motor to stop. Data col-
lected in the first 15-20 ms are scattered and are ignored
(Liang and Mackay, 1993). In the extensional flow test, it
takes at least 50 ms for the motor to stop (Orr and Sridhar,
1996). Any viscoelastic stress with relaxation time less
than those mentioned above cannot be distinguished from
the viscous stress. Theoretically speaking, the stress jump
ratio measured in experiments represents an upper limit for
the viscous stress. A more accurate evaluation relies on the
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development of instrumental techniques.

The stress-optical rule states that the birefringence index
is proportional to the viscoelastic stress (Fuller, 1995).
Liang and Mackay (1993) did not observe a stress jump for
a variety of polymer melts tested in their laboratory, sug-
gesting the fact that polymer melts are dominated by vis-
coelastic stress. For semirigid and rigid macromolecular
solutions, as well as for hard sphere suspensions, the “vis-
coelastic” component of viscosity (a decreasing function of
shear rate) , dominates the viscous component at low shear
rate. The viscous stress becomes prominent at high shear
rate,

Another interesting issne concems the normal stress
Jjump. Note that, we refer here to the primary normal stress
difference N,(=6y,—03,) or the primary normal stress coef-
ficient w,(=-N,/ )/2 ). Currently there is no experimental
evidence proving the existence of such a normal stress
jump and various models may generate different predic-
tions. For example, at cessation of flow, the Bird-Curtiss
model predicts a normal stress jump. So do the De Kee-
Carreau model and the bead-rod-spring model with internal
viscosity (Manke and Williams, 1989). De Kee and Chan
Man Fong (1999) showed that a non-zero primary normal
stress cocfficient at infinite shear rate .. should exist for
a normal stress jump to occur. The experimental work of
Choe (1993) suggests such non-zero .. The network
model with internal viscosity by Sun et al. (2000b) predicts
no normal stress jump. It is possible that there is no normal
stress jump, as the jump characteristics are most likely
related to the purely viscous contribution. This conflict is
yet to be solved.
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