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Rough Set-based Incremental Inductive Learning Algorithm:
Theory and Applications
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Abstract

Classical methods to find a minimal set of rules based on the rough set theory are known to be ineffective in dealing
with new instances added to the universe. This paper introduces an inductive learning algorithm for incrementally
retrieving a minimal set of rules from a given decision table. Then, the algorithm is validated via simulations with
two sets of data, in comparison with a classical non-incremental algorithm. The simulation results show that the
proposed algorithm is effective in dealing with new instances, especially in practical use.
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1. Introduction

For the rough set theory to be more effective in a
dynamic environment, there should be some rough
set-based decision algorithm that 1is capable of
incremental rough approximation. A non-incremental
learning algorithm may be utilized for learning tasks
with a single fixed set of training instances. For online
learning tasks, however, one would prefer an incremental
learning algorithm since it is more efficient to revise an
existing minimal set of rules than generate a minimal set
of decision rules each time a new instance is observed.
The cost of generating a minimal set of rules from
scratch can be too expensive if a non-incremental
method is applied for an online learning task. In this
paper, we tackle the problem of adaptively and
effectively producing a minimal set of rules from an
increased universe.

Pawlak [1] showed that the principles of inductive
learning can be precisely formulated and in a unified
way within the framework of the rough set theory.
Recently, Bang and Bien [2] proposed an algorithm for
incremental inductive learning which does not require
recalculation for the overall examples when a new
instance is added onto a consistent decision table in the
framework of rough set.

In this paper, a modified categorization is provided
with several theorems and its applications are shown to
validate the incremental algorithm. In Section I, we
briefly review a typical classical algorithm for finding a
minimal set of rules from a decision table. Section III
introduces the theory of rough set-based incremental
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inductive learning. In Section IV, its applications are
shown with two data sets. The last section concludes
with a summary and discussion of further works.

2. Inductive Learning

In [3] is presented a method of minimization of a
decision -table consisting of the 3 steps. We denote three
notions K, L and M as outcomes of each step. K is the
set of all R@-basic decision rules, where R is a
¢-reduct of P. L is defined by the set of all reducts of
each RQ-decision rule, that is, L = {reduct of ¢ /R — ¢}l
#i— ¢, is a decision rule in S, i € U}. Finally, M is a
minimal set of decision rules which can be obtained by
calculating a reduct of L. Thus, the classical non-
incremental inductive learning algorithm generates K, L
and M in order as steps go on.

The following example is given to illustrate the above

procedure in more detail.

Table 1. A decision table for BCD-to-seven-segment

decoder
Ui A B C D a
0| 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
g1 1 00 0 1]

Example 1. The seven outputs of a BCD-to-seven-
segment decoder, {a, b, ¢, d e, f, g} select the corresponding
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segments in the display. Let us denote A, B, C and D be
four bit inputs and assume that the first output a is
considered only and that 0-8 in BCD are of interest. The
truth table for the input-output relationship can be
considered as a decision table and can be derived as
follows:

Suppose that P={A, B, C, D} and @={a}. We can
easily find a unique reduct, RED(P, @) = {{B, C, D}} of
the algorithm (P, @) by Step 1. Let R = {B, C, D).
Eliminating the duplicated row, object 8 from Table 1,
we obtain Table 2.

Table 2. RQ)-basic decision rules with R ={B8, C, D}
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Computing all reducts of each R@Q-basic decision rule
in Table 2 by Step 2, we get Table 3.

Table 3. All reducts of each RQ-basic decision rule

U, B C D A
0 0 X 0 1
1 0 0 1 0
2 X 1 x 1
2 0 X 0 1
3 x 1 x 1
4 1 0 0 0
5 1 X 1 1
6 X 1 X 1
7 X 1 X 1
7 1 X 1 1

Finally, according to Step 3, we find the following one
minimal decision algorithm:

ByDy — q, ---From Rule 0

ByCyD, - a, ---FromRulel

C, —aq ---FromRule 2,3,6,7

B,CyDy —a, ---FromRule4

B\D, - q ---From Rule 5 W

3. Rough Set-based Incremental Inductive
Learning

The rough set approach to inductive learning reviewed
in Section II is useful in the sense that it can provide a
systematic way to find a minimal set of decision rules
from a large data set. For non-incremental learning

tasks, this algorithm is a good choice for building a
classification rule. For incremental learning tasks,
however, it would be far from a preferable method to
accept instances incrementally without building a new
minimal set of decision rules. A primary motivation for
using incremental systems is that knowledge should be
rapidly updated with each new observation.

We propose a new incremental inductive learning
algorithm. The basic idea of the algorithm may be
compared to the following example. Let us consider the
case that we want to put a number of different sized
objects in a box. Suppose it is considered that all the
objects are stacked up neatly from the bottom of the box
such that the size of the box is minimal when it is
realized that one object is mistakenly neglected to be
put. Then the problem is how we can put the object in
the box in such a way that we rearrange only the
smallest number of objects by taking out from the top
and putting them back while the size of the completed
box is still minimal.

Hinted by the nature of the above problem and its
solution process, we have developed a method of how to
update a minimal set of decision rules when a new
instance is added as described in this section.

3.1 Refinement of Categorization for New Instances

Pawlak [1][3] considered three possibilities when
adding a new instance to the umverse. According to his
categorization, a new instance i1s said to confirm the
knowledge if it already appears in the universe, while it
1s said to contradict the knowledge if there exists an
object that has the same predecessor with that of the
instance but has a different successor, and is said to
completely new if the instance does not belong to any
decision class. But we find that there is a case which
does not belong to any of the above category. For
example, what happens if a new instance x:A;B0GD; —
a; is added to the universe presented in Example 17 We
find that this instance does not belong to any of the 3
categories by Pawlak ([1][3]), and thus, need to refine
the categorization for new instances.

We give formal definitions of four categories that
cover all possibilities with respect to a minimal decision
algorithm which, according to the designer’s interest, is
selected out of possibly more than one minimal decision
algorithms,

Let M be the selected minimal decision algorithm.
Suppose 4, is the predecessor and ¢; is the successor
of the rule associated with an object { € U, respectively.

Definition 1. Completely new instance : A new instance
x is said to be completely new to M if ¢,* ¢ for all
decision rules ¢ — ¢ EM.

Definition 2. Confirmation : A new instance x is said
to confirm M if there exists a decision rule ¢ ¢ €M
such that ¢, ~>dand ¢.= ¢.

Definition 3. Partial contradiction: A new instance x
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is said to partially contradict M if 1) there exists a
decision rule ¢ — ¢ and ¢.* ¢, and 2) ¢.* ¢, for
every basic decision rule y € U.

Definition 4. Complete contradiction : A new instance
x is said to completely contradict M if there exists a basic
decision rule y € U such that ¢x= ¢, and ¢.* ¢,.

Note that the definitions are made with respect to a
minimal decision algorithm. Thus, the problem to
determine which category a new instance belongs to
depends on that of which minimal decision algorithm is
selected.

The terminology partially contradict comes from the
fact that there can be a new instance which does not
contradict the acquired knowledge but contradicts a
minimal decision algorithm. In Example 1, A/BoGoD: —
ar does not contradict Table 1 even though it contradicts
the minimal decision algorithm (1).

A completely new instance can also be considered as
either a partially contradictory case or a completely
contradictory case.

The following example illustrates the above catego-
rization.

Example 2. Let us consider again the KR-system
shown in Table 1 with the same P and . Suppose we
add a new instance ApB:GD; — a;. The new instance
confirms the minimal decision algorithm (1). In fact, x is
equal to the object 5 in U.

Now let us add A:;B:CiD: > a;. This instance also
confirms the minimal decision algorithm but we cannot
find an object in U which is the same as x. Note that
for both cases, the minimal decision algorithm after
adding x is the same as the original one.

If we add an instance A¢B:;CoD; — ay, it corresponds to
the completely new case and to completely contradictory
case at the same time since we do not have decision class
2 in M and there are AoB;GD;—a; in U.

Let us add an instance AoB:CiD;— ap. The new
instance completely contradicts the minimal decision
algorithm (1).

If we add A:B;CiD; — az, the added instance is both
completely new and partially contradictory since we do
not have decision class 2 in M and there is BiD; a; in
M which has a predecessor implying A;B;CiD; and a
different successor from that of x.

Finally, we investigate the partially contradictory case
in detail. If we add

x  AiBoGDr — ay, (2)

this instance partially contradicts the minimal decision
algorithm (1) since it does not contradict Table 1 but
contradicts the minimal decision algorithm (1). In this
case, we should calculate a new Q-reduct of P, "= {A,
B, C, D} which is different from R =1{B, C, D} in Example
1. All reducts of each E’'Q-basic decision rule are shown
in Table 4.
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Table 4. All reducts of each R'Q- basic decision rule

§) A B C D A
0 X 0 X 0 1
1 0 0 0 1 0
2 X X 1 X 1
2’ X 0 X 0 1
3 X X 1 x 1
4 X 1 0 0 0
5 X 1 X 1 1
6 X X 1 X 1
7 X x 1 X 1
7' x 1 x 1 1
8 X 0 X 0 1
8 1 X X X 1
9 1 X X X 1
One of the minimal decision algorithms is:

ByD, — a, ---From Rule 0, 8

AyByCyD; > a, ---FromRulel

C, —>a ---FromRule 2,3,6,7

B CyDy > ay ---From Rule 4

B\ D —a, ---From Rule § (3)

A - a ---From Rule 9

Again, we add
vy AiBoCiDp— ap (4)

to the decision table to which (2) is already added. We
now have 11 objects in the decision table. This instance
also partially contradicts the minimal decision algorithm
(3), but, the new @-reduct of P is stil R’'' ={A, B, C,
D}, which is equal to R’. One of the minimal decision
algorithms is:

B,CyDy > a; ---FromRule0,8
AyByCyD, — a, ---FromRulel
AC, - a, ---FromRule2,3,6,7
B, CyDy - a, ---FromRuled
B,D| —>a, ---FromRule$5
A Cy —>a, ---FromRule9 5)
A C, > ay, - FromRulex

If it is always true that the minimal decision
algorithm does not change when the added instance
confirms the minimal decision algorithm as shown in
Example 2, we can use it as the first check item for
incremental inductive learning. We shall present a result
in a form of theorem which provides that this is true.

For easier explanation, we define [’ = UU{x} when x
is added to U. We also define additional notions K’, L’,
M’ as well as K, L, M . These are for describing after
adding the new instance x. That is, K’ is the set of all
R’'@Q-hasic decision rules, where R’ is defined by a new
Q-reduct of P after the new instance is added, L’ is
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defined by the set of all reducts of each R’'@-decision
rule, and M’ denotes a reduct of L’, i.e., a minimal set
of decision rules of U,

We now give the following theorem.

Theorem 1. Let M be a minimal decision algorithm of
U and M be the set of all minimal decision algorithms of
U’. Then the new instance x confirms M if and only if
MeM.

Proof. Since M € M, we find that M is also a minimal
decision algorithms of UJ'. Thus x confirms M.

To show the converse implication, let a decision rule
be the same as the rule associated with x which is found
in U. Then it is obvious that M € M. Now suppose that
x confirms M but there is no ¥ € U such that v |=;¢,
/B, where R, is a @Q-reduct of P. Then a new rule
associated with x does not conflict with any rules in (R,
Q). Hence, the algorithm (R, &) is consistent in U’. By
definition, R is independent in U, that is, if any attribute
in 12 is removed then (R, @) becomes inconsistent in U.
This is always true regardless of whether or not a new
rule associated with x is added to U. Hence, R is
independent in U’. Therefore, (R, @) is consistent and
independent in U’ and thus R is still a reduct of P in
(P, @ in U’. By noting that L is the set of all reducts
of each R@Q-basic decision rule, we find that L remains
unchanged because the rules that are indispensable in L
remain so even after addition of x, and thus, M € M.

For the KR-system shown in Table 1, suppose we
add a new instance x: AoB;C:D; — a;. The new instance
x confirms M in (1) but there is no y(€ ) such that yl =
¢ /R. We can easily find that, after adding x to U,
RED(P, @) ={{B, C ,D}} and K’ = KU{B/CD, > as}
and L’ = L UAGD: — ai, BiDi— a1, B:Co > ai}. We see
that M is not altered since L already has the rule B;D;
— a.

Among the proposed four categories for new instances,
confirming instances can be added without changing any
minimal decision algorithm by Theorem 1. If a new
instance partially contradicts the minimal decision
algorithm, 1t i1s reasonable to consider the level of how
much the minimal decision algorithm should be changed.
This issue will be considered in detail in the next
section. Regarding the completely contradictory instances,
it is more complicated to analyze the cases than a
partially contradictory case and thus we need more
investigation based on the study of partially contradictory
instances.

3.2 Criteria for Reduct Change

The classical method to find a minimal decision
algorithm consists of finding a @-reduct of P, finding all
reducts of each restricted decision rule to the @-reduct
of P, and finally finding a reduct of the set of decision
rules from the previous step. Once it is known that the
new instance x partially contradicts M, we must check if
the @-reduct of P is still available in order to decide to

skip Step 1. To this end, we need a criterion on which
to base the decision. Theorem 2 gives us such a
criterion.

Theorem 2. Suppose S = (U, A) is a KR-system and
let £ be a @-reduct of P. Suppose the new instance x is
added to U with a P@-hasic decision rule ¢, ¢,
which partially contradicts M. Then R is also one of the
Q-reducts of P in S" = (U, A) if and only if there does
not exist a y € U such that v |=:¢ /R.

Proof. Suppose first there does not exist any y € U
such that yl=s ¢ /R. Then a new rule associated with x
does not conflict with any rules in (R, @). Hence, the
algorithm (R, &) is consistent in U”. By definition, R is
independent in U, that is, if any attribute in R is removed
then (I, €) becomes inconsistent in I/, This is naturally
true whether a new object x is added to U or not.
Hence, R is independent in U’. Therefore, (B, @) is
consistent and independent in 7" and thus R is still a
reduct of P in (P, @ in U".

To show the necessity, let a rule associated with = be
in the minimized rule set which conflicts with the new
rule associated with x. Then,

[=s#x— d-and ¢x* ¢, (6)
where x| =58> and 2l =,4-— ¢. Since § JR=¢_,
|=4 /R ¢/R. (N

By assumption, there exists a y € U such that
vi=sd /R, i e, 6/R= $/R. (8)

(7) and (8) yield
|:s ¢ y/le - ﬁz/R (9)

And, since ¥ and z are consistent in (R, @) ifl=s ¢ ,/R —
#4./R then ¢, = ¢, This and (9) yield

Py = @ 1o

From (6) and (10),
Py = P (11)

As a result from (8) and (11), ¢ /R — #,/R and ¢,
% @, Since this implies that the new rule associated
with x conflicts with the rule associated with y in (R, @)
in U, K cannot be a reduct of (P, @) in U".

Now we can decide whether R is still a ©@-reduct of
P by comparing the new instance and each object in U.
If it is found that R needs to be recalculated, we must
reconstruct all the reducts of KH@-basic decision rules,
L’. Then a question arises whether we must calculate L’
again. In Example 2, since the set of all reducts of each
R”Q-basic decision rule has the three same rows with
Table 4, we do not have to calculate the reducts of
RQ-basic decision rules for {1, 4, 5} in Table 4. This
implies we can skip Step 2 for some R@Q)-basic decision
rules and can use the reduct of rules in L. The following
theorem indicates which reducts of R@-basic decision
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rules in L can be used again.

Theorem 3. Suppose S = (U, A) is a KR-system and
let R be a Q-reduct of P. Suppose a new instance x is
added to U with a PQ-basic decision rule 4.~ ¢x
which partially contradicts M and x does not make R
changed. Then, for each rule ¢;— ¢; € M, all the
reducts of the rule 4;— ¢; € K are also in L’ if and
only if #. — @ confirms the set of one rule {4; —~ ¢y}
Here 44 — ¢y is the j-th reduct of the i~th R@-basic
decision rule.

Prodf. Consider a decision ¢;— ¢; € K Since ¢, — 4
implies ¢, = ¢y, that is, ¢« — ¢ does not contradict ¢ ; —
4 ¢, @;can remain in L’

To show the necessity, for a decision rule ¢;— ¢; in
K, it is obvious that x cannot contradict any reduct of
¢;— @i Thus, 4, ¢; implies ¢, = @

Based on the above result, we shall consider a subset
Cy of U defined as:

G-li€UIVdi— o €M x contradicts ¢ — ¢4 € M}

Note that, for a basic rule ¢ — ¢, reduct of dis
generally not unique. Once we find C. and calculate all
the reduct of each R@Q-basic decision rule in C,, we can
construct L’ instead of using Step 2.

Next, to find a minimal set of rules M’, we may try
to find a reduct of L’. If we take into account, however,
the fact that M’ is made up of reducts of each decision
class, it i1s enough to calculate only the reducts of the
decision classes into which the R@-basic decision rules
in Cy, and the new instance are classified.

The overall flowchart of the algorithm is given in Fig. 1.

3.3 An lllustrative Example

Consider the KR-system shown in Table 1 with P =
{A, B, C, D} and @ = {a} again. Note that, in Example
2, we have obtained a minimal set of rules (3) when a
new instance A/Bo(sD;— a; is added to the decision
table given in Table 1. We rewrite the decision table in
Table 5 after adding the new instance as well as its
minimal set of rules in (12).

Table 5. New decision rule with 10 objects

U A B C D A
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 1 i
7 0 1 1 1 1
8 1 0 0 0 1
10 1 0 0 1 1
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RED(P,O)?
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Find new RED(g — @) forie C..
find RED(¢, — @,)
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Find all RED(4, — o)
of each RQ-basic
decision rule for iU

and construct L'. ¢
¢ Reduce the set of decision
rules for each class of C,,
Reduce L’ reduce Ag,

and construct M'. and construct M'.
I R
S 4

Fig. 1. Rough set-based incremental inductive learning

algorithm

ByDy = a ---From Rule 0, 8

AyByCyD| > a, ---FromRulel

C, —>a --FromRule 2, 3,6,7

B CoDy — ay --From Rule 4

B, D| - a --From Rule 5 12)
A —a --From Rule 9

Suppose that we choose (12) as our minimal decision
algorithm M and we add another instance x, (4), in
Example 2.

The algorithm examines first whether x is completely
new to M by comparing its successor with successors of
the rules in M. Since this is not the case, the algorithm
examines next if x confirms M. By Theorem 1, if it
confirms M then a new minimal decision algorithm
becomes M itself. By comparing x with the decision
rules in M, x 1s proved not to confirm M, and thus the
algorithm examines whether it partially contradicts M.
Since, the instance x: A;BoCiDy — ap contradicts the first
and the sixth rule in (12), x is either completely
contradictory or partially contradict. Since ¢ (= A1BoCiDo)
does not appear in the predecessors of any objects in U,
one can find that x is a partially contradictory instance.

Next, by Theorem 2, R is still a @-reduct of Pin S =
(U, A) since there is no y € U such that yl=,¢ /R.
Now, the algorithm determines the set of labels as noted
in Theorem 3. Since the first and sixth rules in (12),
which x contradicts, come from rule 0, 8 and rule 9 in
Table 5, we find that Cx = {0, 8, 9).
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Thus, we obtain RED(d¢— ¢o) = {{B, C, D}, {A, B,
D)}, RED(ds— ¢3)=UB, C D}, {4, C}}, RED(¢q¢—
e9) = A, C}, {4, D}}, and RED(d,— ¢, = {{4, C}},
which are also presented in a tabular form in Table 6.

Table 6. All reducts of each RQ-basic rule in Cs

U A B C D a
0 X 0 0 0 1
0’ 0 0 X 0 1
8 x 0 0 0 1
8’ 1 X 0 X 1
9 1 X 0 X 1
9’ 1 X X 1
X 1 X 1 X 0

Combining Table 6 with the set of all R’’Q-basic
rules in Example 2, we get L’. Finally, we should reduce
L’ to extract a minimal set of rules. As mentioned
above, however, we just have to reduce the classes
which reducts of the new instance x and each R@-basic
rule in Cc =10, 8, 9} are classified into. Since the reducts
of x are classified into ay and those of each RQ-basic
rule in (s are classified into a;, we calculate the reducts
for the classes av and a;. We do not have to calculate
the other reducts of the other classes if any (but no
other classes in this example).

The reducts of the class a; are

0: B,CyDy —a, or
B,CyDy —a, or

AyByDy - q,
AC, —>a

ACy—a or
AC, —a, or
C\Dy—>a or

AD, —aq

AyByDy — q

AyC, > q

BD| — q,

AyC,—=a or BC —a

B,C, = a,B D, —a,CD, ->a,AC —a.

(13)

~3 AN W o O

And those of Ay, iLe., the class ay are
0: AB,CyD —ay
4: B CyDy — a,

x: AC - a (14)

Then, a minimal decision algorithm is found to be

B,C,Dy — a,
A C —a,
B,D, > a,
AC, —a

Class a, from (13)

and
AB,C,D, - a,
BC,D, > a,
AC, - a,

Class a,, from (14).

This is identical to(5), which is the result of recalculation
for U".

4. Applications to Two Sets of Data

In order to evaluate the performance of the proposed
incremental inductive learning algorithm, we must
compare the minimal set of rules from the classical
non-incremental algorithm with that from the proposed
incremental algorithm, and also compare the times to
produce the minimal sets of rules from both algorithms.
For a given decision table and an object to be added, the
minimal set of rules extracted by the proposed algorithm
should be the same as that from the decision table to
which the object is added. Moreover, if Npew objects are
to be added one by one, the rninimal set of rules for the
final decision table can be obtained by applying the
proposed algorithm Npew times. Again, the final minimal
set of rules should be the same as that from the decision
table to which the all Nqa objects are added. Here, we
assume that Ny objects are given at the beginning and
then Ny Objects are consecutively added to meet totally
N (= Ny + Nuewobjects. The proposed algorithm is applied
to a couple of data sets. Np objects are to be initially
considered. Then, N, objects are consecutively added
to produce new minimal set of rules by 1) the classical
non-incremental algorithm and 2) the proposed algorithm.

The simulation has been done with Ultra Sparc 1 170
and Rough Set Library (RSL) is used to find reducts and
minimal sets of rules. The simulation procedure is shown
in Fig. 2.

Rule 1: ...

Extract minimal set of rules
> Rule 2: ...

Elapsed Time: T51

Extract minimal set of rules Rule 1: ...

[ Elapsed Time: T, v Ru|e.2:

Rule 1: ..
Rule 2: ...

Extract minimal set of rules
! Elapsed Time: i
@=er Tiso

Fig. 2. Simulation procedure for incremental learning

4.1 Iris Data

Iris data is a classification data set first used by
Fisher [4]. The data, of which a part is shown in Table
7, contains 150 cases of three iris species, 50 cases from
each class. Each case is described by 4 attributes. The
first 50 cases correspond to the first class, the next 50
cases to the second, and the rest to the third.

For this data, we let Ny=51 so that the initial
decision table has at least two classes. Then, we find a
minimal set of rules for the given initial decision table
by classical non-incremental algorithm. Adding 99(=Npew)

671



x| 4 XsAA-HEE =2X 2001, Vol 11, No. 7

objects one by one, we find the corresponding minimal
set of rules both by the classical algorithm and by the
proposed algorithm. After Nuew times of iteratively
applying both algorithms to the incremental decision
table, we get the final minimal set of rules for overall
decision table in which totally 150N = Nop + Naer) Objects
are contained.

Table 7. A part of the iris data

U sepal Sc?pa] petal p(::ta] type
length width length width

47 46 32 1.4 0.2 sctosa
43 5.3 3.7 1.5 0.2 setosa
45 50 3.3 1.4 0.2 setosa
50 7.0 32 4.7 1.4 | versicolor
51 6.4 32 45 1.5 | versicolor
52 6.9 3.1 49 1.5 | versicolor
97 6.2 29 43 1.3 | versicolor
98 5.1 25 30 1.1 | versicolor
9 5.7 2.8 4.1 1.3 | versicolor
100 6.3 33 6.0 25 virginica
101 5.8 27 51 1.9 virginica
102 7.1 30 5.9 2.1 virginica

The calculation time for finding each minimal set of
rules 1s shown in Fig. 3 (a). The classical algorithm
without considering incremental aspect must recalculate
it for all of the objects in the current decision table. The
minimal rule generation time for each new object is
shown in a dotted line in Fig. 3 (a). The time when
incremental algorithm is applied is shown in a solid line.
There is a wide gap between both lines. Fig. 3 (a) also
shows which objects are new, confirmative, partially
contradictory, or completely new. For the iris data, 73
objects out of 99 added objects are confirmative, with
which the minimal sets of rules are most easily obtained
by Theorem 1, 23 objects are partially contradictory with

400 T T = —
Classical non-incremental learning
------ Proposed incremental learning
380N % Completely new
Confirm
300H < Partially contradictory (no-reduct change case)
Pattially contradictary (reduct change case}
250 % 7
£2m I
= I
150 7) i
oot ﬂ' j}
] 1
I | ottt 1]
e . iRt
[ S G @ f ] {
s ARR R RN
50 60 70 80 S0 100 10 120 130 140 150
i object

(a) Minimal rule generation time for each new object
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T T T v T
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reduct unchanged, for which the calculation time of
finding the rules is decreased by Theorem 2, and 2
ohjects are partially contradictory with reduct changed,
for which it is slightly faster to obtain the rules by
Theorem 3. Thus, we can think that the outperforming
result of the proposed algorithm for the iris data comes
from that the added objects are usually confirmative or
partially contradictory. The distribution of iris data is
shown 1n Fig. 4.

Actually, it is also important to compare the
cumulative time to find the final minimal set of rules.
Fig. 3 (b) shows the result. We may observe that the
classical algorithm yields an exponentially increasing
curve while the proposed algorithm gives a steadily
increasing piece-wise linear curve as new objects are
added. It is observed that the proposed algorithm is 105
times faster than the classical algorithm after 99 objects
are added.

42 7Zoo Data

Zoo data is a simple database containing 16 condition
attributes and 1 decision attribute [5]. The data contains
101 objects from seven species of animals. The objects
are randomly distributed so that the same species of
animals, 1.e. the same classes of objects, do not gather
together in successive labels of objects. A part of the
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data is shown in Table 8.

Table 8 A part of the zoo data

U |hair feathers eggs milk tails domestic catesize |type
0|1 0 0 1 0 0 1 1
111 0 0 1 1 0 1 1
210 0 1 0 1 0 0 4
31 0 0 1 0 0 1 1
411 0 0 1 1 0 1 1
511 0 0 1 1 0 1 1
6|1 0 0 1 1 1 1 1
710 0 1 0 1 1 0 4

For this data, we let Np=10, in which two species
appear. Then, we find a minimal set of rules for the
given Initial decision table by classical non-incremental
algorithm. Then, adding 91 (= N,.) objects one by one,
we find the corresponding minimal set of rules both by
the classical algorithm and by the proposed algorithm,
respectively. Similarly to iris data, the calculation time
for finding each minimal set of rules is shown in Fig. 5
(a). There exists also a wide gap between the curves of
the classical algorithm and the proposed algorithm. And
also, note that 79 objects out of 91 added objects are
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Fig. 5. Performance evaluation with zoo data

Partlally contradict
Partially contradict (with reduct changed)
(with reduct unchanged) "4 POt completely new  Completely new
and not completely new § 5.5%
2.2%

Confirmative
86.8%
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confirmative, 2 objects are partially contradictory with
reduct unchanged, and 5 objects are partially contradictory
with reduct changed. The distribution of the iris data is
shown in Fig 6.

Fig. 5 (b) shows that the classical algorithm yields an
exponentially increasing curve while the proposed
algorithm gives a steadily increasing curve as new
objects are added in view of the cumulative time to find
the final minimal set of rules. It is also observed that the
proposed algorithm is 11.6 times faster than the classical
algorithm after 91 objects are added.

5. Concluding Remarks

The rough set-based incremental inductive learning
algorithm is incremental and computationally economical,
thus sustaining a continual basis for reacting to new
stimuli. This is an important desirable property of any
system under real-world constraints. The algorithm has
been evaluated with two sets of data where all the added
objects are almost confirmative or partially contradictory
with reduct unchanged. It is shown that its performance
is much faster than the classical one as the time passes.
In case of the data sets used in the simulation, the
proposed algorithm is effective in dealing with new
instances added to a given set.

The proposed algorithm needs to be further improved
to handle the case when a completely contradictory
instance is introduced to the minimal set of rules.
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