Abstract
Industrial processes are normally operated by skilled humans who have the cumulative and logical information about the system. Fuzzy control has been investigated for many application. Intelligent control approaches based on fuzzy logic have a chance to include human thinking. This paper represents modeling approach based upon operators knowledge without mathematical model of the system and optimize the controller. The experimented system is constructed for sending a ball to the goal position using wind of two DC motors in the predefined path. A vision camera to mimic human eyes detects the ball position. The system used in this experiment could be hardly modeled by mathematical methods and ould not be easily controlled by conventional manners. The controller is designed based on the input-output data and experimental knowledge obtained by trials, and optimized under the predefined performance criterion. And this paper shows the data adaptation for changeable operating condition. When the system is driven in the abnormal condition with unconsidered noise, the new optimal operating parameters could be defined by adjusting membership functions. Thus, this technique could be applied in industrial fields.